Archimedes's Measurement of the Circle in Arabic: Texts and Translations

Emre Coşkun
Department of Mathematics, Middle East Technical University

Abstract

Measurement of the Circle is a short treatise by Archimedes on the area and the perimeter of a circle. It was translated into Arabic in the 9th century, along with other works attributed to Archimedes. Various versions of the Arabic translation of Measurement of the Circle were also produced. In this article, the critical editions of three Arabic versions of Measurement of the Circle are presented together with their English translations

I Introduction

Measurement of the Circle (henceforth MC), in its extant form, is a short treatise by Archimedes (ca. 287-212 BCE) that contains three propositions pertaining to the perimeter-diameter ratio and the area of a circle. Due to its interest both for Greek geometers working in the Euclidean tradition and other mathematicians interested in its applications to measurement and astronomy, $M C$ attracted the attention of many Greek mathematicians until the end of Late Antiquity.

In the 9th century many scientific and philosophical texts, both Greek and nonGreek, were translated into Arabic during what has been called the "translation movement." ${ }^{1}$ Among the translated texts are some of the treatises of Archimedes such as On the Sphere and the Cylinder and $M C$, along with a number of shorter works attributed to Archimedes but not extant in Greek. These works later served as inspiration and starting point for a great amount of original research by scholars in various Islamicate societies, in addition to derivative versions.

The impact of the Arabic $M C$ was not limited to the Islamicate world. Two Hebrew and two Latin translations of the Arabic $M C$ were made in Western Europe in the Middle Ages. The Hebrew translations, which seem to have been made in the 12 th and 13 th centuries, are anonymous. The Latin translations, one probably by Plato of Tivoli (fl. first half of the 12th century) and the other by Gerard of Cremona (ca. 1114-1187), gave rise to a wave of mathematical activity in which several new versions of the $M C$ as well as other treatises on the subject were written.

Three Arabic versions of the $M C$, called the Fatih, Columbia, and the Riżz \bar{a} versions in this article, are extant, as well as the well-known taḥrīr of Naṣīr al-Dīn

[^0]al-Ṭūsī (1201-1274). ${ }^{2}$ Despite the importance of their study for the history of mathematics, to date no critical edition of these three versions of the Arabic MC have been published. To be sure, two of them, namely the Fatih and Columbia versions, have been studied by Knorr (1989) in detail; however, Knorr's work only contains translations of these two texts and not critical editions. ${ }^{3}$ The purpose of this article is to attempt to fill this gap by presenting the critical editions of the Fatih, Columbia, and the Riżā versions of MC together with their English translations. ${ }^{4}$

I. 1 Measurement of the Circle in Greek Mathematics

I.1.1 The Greek text of Measurement of the Circle

As stated above, the subject of $M C$ is the perimeter-diameter ratio and the area of a circle. ${ }^{5}$ The extant Greek text has three propositions: ${ }^{6}$ MC 1 states that the area of a circle is equal to the area of a right-angled triangle one of whose legs is equal to the radius of the circle and whose other leg is equal to the perimeter of the circle; ${ }^{7}$

[^1]$M C 2$ states that the ratio of a circle to the square of its diameter is $11: 14 ; M C 3$ states that the perimeter of a circle exceeds three times its diameter by an amount smaller than $1 / 7$ of the diameter and greater than $10 / 71$ of the diameter. ${ }^{8}$

Since Archimedes himself refers to the result of MC 3 in his Sand Reckoner, and to MC 1 in his Method, his authorship of a text on the measurement of the circle that contains at least MC 1 and MC 3 is certain (Heiberg 1972, II.230.3-6, 440.10-
 in one manuscript (Heiberg 1972, I.232), while there is no reason to suppose that it was coined by Archimedes himself, it is attested, for instance, by Hero (fl. ca. 62) in Metrica (Acerbi and Vitrac 2014, 212.1-2, 16-17, 240.7-9). Unlike some other works of Archimedes, such as the two books of On the Sphere and the Cylinder or Quadrature of the Parabola, MC contains no introductory letter that might have given us further information on the circumstances of its composition and circulation.

Knorr's (1989, 375-400) study contains excerpts from Hero, Pappus (fl. 300350), and Theon (fl. 350-400), ${ }^{9}$ as well as versions of MC 1 preserved in Pappus's Collection and Theon's Commentary on Ptolemy's Book I. It is evident from the testimony of these authors that $M C$ as originally written by Archimedes contained other propositions besides those preserved in the extant Greek text. ${ }^{10}$
$M C$ is closely related to several of the works of Archimedes by its subject matter and approach. One very conspicuous strain in the works of Archimedes is the metrical study of areas and volumes of various geometric figures. This strain is represented by works such as On the Sphere and the Cylinder, MC, Conoids and Spheroids, Spiral Lines, and Quadrature of the Parabola, where the "indirect method" that is usually attributed to Eudoxus of Cnidus (ca. 400-ca. 347 BCE) is used for studying areas and volumes of various geometrical figures. ${ }^{11}$

The Greek text of $M C$, together with other treatises of Archimedes then extant in Greek, was edited by Johan Ludvig Heiberg in 1880-1881 in three volumes (Heiberg 1880-1881). After the discovery of two manuscripts, one of which is the famous

[^2]Archimedes Palimpsest dating from the 10th century, ${ }^{12}$ Heiberg published a second edition in 1910-1915, again in three volumes, the first two of which are available today as a reprint (Heiberg 1972).

I.1.2 Measurement of the Circle after Archimedes

The writings of Greek mathematicians after Archimedes abound with references to $M C$ and uses of the results established in it. Few of the works of Archimedes were the object of such interest, and $\operatorname{Knorr}(1978,217)$ is probably right in supposing that one reason for this is that the reader does not need to know much mathematics to understand $M C$; for this, familiarity with Books I-VI and XII of Euclid's Elements as well as some basic arithmetic would have been sufficient. As the references by various Greek astronomers to $M C$ or the results contained therein suggest, the central role of the circle in Greek astronomy is likely to have been another reason for the relative popularity of MC among Greek mathematicians.

Without undertaking a detailed survey, I present some references to $M C$ in postArchimedes Greek mathematics below. I have chosen five texts, namely Hero's Metrica, Ptolemy's Syntaxis, Theon of Smyrna's Exposition of the Mathematical Things Useful in the Reading of Plato, Proclus's Commentary on the First Book of Euclid's Elements, and an anonymous Commentary on Isoperimetric Plane Figures. These texts are chosen to illustrate the variety of the mathematical contexts in which the $M C$ was cited and used: metrical (in the Metrica), astronomical (in the Syntaxis and the Exposition of the Mathematical Things Useful in the Reading of Plato), and purely geometrical (in the Commentary on the First Book of Euclid's Elements and Commentary on Isoperimetric Plane Figures). I have differentiated between explicit references, where the title of $M C$ or the name of Archimedes is mentioned, and implicit references, where it is not. I have left out Theon's Commentary on Ptolemy's Book I and Pappus's (fl. 300-350) Collectio since they have already been examined in detail by Knorr (1989, 375-400). Eutocius's commentary on MC has also not been included here since it is treated in more detail below in Section I.1.3.

1. In Metrica I. 26 Hero cites MC 1 and MC 2 explicitly (Acerbi and Vitrac 2014, 212.1-2, 16-17, 240.7-9). However, MC 1 is cited in the "product format," ${ }^{13}$ which differs from the extant Greek text: the area of a rectangle one of whose sides is equal to the perimeter of the circle and whose other side is equal to the radius of the circle is equal to twice the area of the circle. He also cites explicitly a now lost work of Archimedes titled On Plynths and Cylinders which states that the perimeter-diameter ratio of a circle is greater than $211875: 67441$

[^3]and smaller than $197888: 62351 .{ }^{14}$ But he rejects the use of these numbers since they are ill-suited to calculations, and he opts for the value $22: 7$ for the perimeter-diameter ratio of a circle without, however, citing $M C 3$ explicitly. Hero uses the results of $M C 1$ and $M C 2$ along with the perimeter-diameter ratio 22: 7 later in the book numerous times: to calculate areas of sectors of the circle (I.30-31, 33) and ellipses (I.34), the lateral surface areas of cylinders and cones (I.36, 37), the surface areas of spheres (I.38) and segments of spheres (I.39), the volumes of cylinders and cones (II.1), spheres (II.11), segments of spheres (II.12), and tori (II.13).
One more explicit reference to $M C$ in the Metrica has already been mentioned: the so-called "Sector Theorem." 15 This result states that the area of a sector of the circle is equal to half of the area of the rectangle one of whose sides is equal to the perimeter of the sector and whose other side is equal to the radius of the circle where the sector is located (Acerbi and Vitrac 2014, 240.7-9).
2. In Syntaxis VI.7, in a discussion of solar eclipses, Ptolemy (ca. 100-ca. 170) states that the value he uses for the perimeter-diameter ratio of a circle, $3 ; 8,30: 1$, is about halfway between $31 / 7$ and $310 / 71$, the simple values used by Archimedes (Heiberg 1898, 513.1-5). He then uses this ratio to calculate the overlapping parts of the disks of the sun and the moon during a solar eclipse; here he cites MC 1 implicitly but in the product format (Heiberg 1898, 514.5-6).
3. In a discussion on the sphericity of the universe and Earth, and their respective sizes, Theon of Smyrna (fl. early 2nd century) mentions in Exposition of the Mathematical Things Useful in the Reading of Plato that Eratosthenes shows that the size of Earth is approximately 252000 stadia and Archimedes shows that the perimeter of a circle, when straightened out, is $31 / 7$ times its diameter; the diameter of Earth would therefore be approximately 80182 stadia (Hiller 1878, 124.10-19). Later on, he also cites MC 2 implicitly (Hiller 1878, 126.1214). ${ }^{16}$

[^4]4. At the end of his commentary on Elements I. 45 (on the construction of a parallelogram equal to a given rectilinear figure in a given rectilinear angle) Proclus offers his conjecture that this problem was at the origin of the problem of the squaring of the circle, "for if it is worthy of inquiry to find a parallelogram equal to a given rectilinear figure, it is also worthy of inquiry whether it is possible to find rectilinear figures equal to curvilinear figures." He then cites $M C 1$ explicitly (Friedlein 1873, 422.24-423.5). ${ }^{17}$
5. In the anonymous Commentary on Isoperimetric Plane Figures (around the middle of the 5 th century), ${ }^{18}$ the author wants to prove that the circle has the greatest area among all figures of the same perimeter. Since he has already proved that, among all polygons of the same perimeter and number of sides, the regular one has the greatest area, it will suffice to prove that the circle has greater area than any regular polygon having the same perimeter as the circle. At the end of the proof of this, the author cites MC 1 explicitly (Hultsch 18761878, III.1158.22-1160.4; Acerbi, Vinel, and Vitrac 2010, 130.17-130.23). ${ }^{19}$

I.1.3 Eutocius's Commentary to Measurement of the Circle

Among all Greek mathematicians of antiquity, it is Eutocius of Ascalon (b. ca. 480) who engaged with the treatises of Archimedes the most by writing detailed commentaries on them. His commentaries on $M C$, on both books of On the Sphere and the Cylinder as well as on both books of Planes in Equilibrium are extant (Heiberg 1880-1881, III.1-371). ${ }^{20}$ In addition, he wrote commentaries on the first four books of Apollonius's (b. ca. 240 BCE) Conics; these also survive. ${ }^{21}$

[^5]Eutocius's practice as a commentator on the works of Greek mathematicians of antiquity, and Archimedes in particular, has been investigated in detail by DecorpsFoulquier (1998, 89-97). It was part of an established tradition of commentary "whose rules were codified by grammarians, rhetors, and philosophers," and its main goal was to "explain clearly that which is difficult to understand" (Decorps-Foulquier 1998, 89-90). ${ }^{22}$

In the brief introduction to his commentary on $M C$, Eutocius makes some remarks on the goals of Archimedes as well as the history of the problem of the quadrature of the circle. Thus Archimedes's goal in MC 1 is, according to Eutocius, "to exhibit to which rectilinear figure the circle would be equal, a matter investigated long ago by famous philosophers before him" (Heiberg 1880-1881, III.264.12-14). Both Hippocrates of Chios and Antiphon (both 5th century BCE) had "investigated this problem carefully and came up with fallacies any reader of Eudemus's history of geometry and Aristotelian Ceria would know well" (Heiberg 1880-1881, III.264.1520). ${ }^{23}$ Eutocius continues by attributing to Heraclides's Life of Archimedes the notion that $M C$ is "necessary for everyday purposes" (Heiberg 1880-1881, III.266.1$2) ;{ }^{24}$ he then cites the upper and lower bounds on the perimeter-diameter ratio given in MC 3. Even though these bounds are approximate, Archimedes actually "found a straight line equal to the perimeter of a circle by using some spirals" (Heiberg 1880-1881, III.266.6-7). ${ }^{25}$

Eutocius's comments on MC 1 are also quite brief and they address a possible objection concerning the lack of an important element in Archimedes's proof (Heiberg 1880-1881, III.266.8-268.17). Since MC 1 asserts the equality of the area of a circle and the area of a right-angled triangle whose sides are equal to the radius and perimeter of the circle, it might be thought that Archimedes left out the step of supplying a line equal to the perimeter of the circle. Eutocius retorts to this imagined

[^6]objection that "it is clear to all that the perimeter of the circle is a one-dimensional quantity and a straight line is of the same kind" (Heiberg 1880-1881, III.266.2325). Hence, "even if it has not yet been possible to produce a straight line equal to the perimeter of a circle, that there is, by nature, some straight line equal [to the perimeter] is itself not doubted by anyone" (Heiberg 1880-1881, III.266.26-268.2). ${ }^{26}$

Eutocius does not comment on $M C 2$; in contrast, his comments on $M C 3$ are quite detailed and take up the bulk of his commentary. As already mentioned in Section I.1.1, $M C 3$ states that the perimeter of a circle exceeds three times its diameter by an amount smaller than $1 / 7$ of the diameter and greater than 10/71 of the diameter. Archimedes proves this by using regular hexagons circumscribed and inscribed around and in the given circle, followed by four angle bisections in both cases to construct circumscribed and inscribed regular 96-gons to establish upper and lower bounds for the perimeter-diameter ratio, respectively. The angle bisector theorem (Elements VI.3) and the Pythagorean theorem (Elements I.47) are used to calculate the side lengths of the constructed polygons at each step, which necessitate the calculation of square roots. ${ }^{27}$ Eutocius starts his commentary on $M C 3$ by pointing out that the proof makes constant use of square roots, but it is impossible to calculate these exactly unless one starts with a square number. Since the way to do this approximately has already been described by Hero in his Metrica, by Pappus, Theon, and by the many commentators of Ptolemy's Syntaxis, he dispenses with such explanation (Heiberg 1880-1881, III.268.19-270.6). The rest of his comments on $M C 3$ are dedicated to the justification of the calculations at each angle bisection. Eutocius's providing details for these calculations is consistent with the requirement, stated above, that commentaries "explain clearly that which is difficult to understand" since $M C$ gives only the results of these calculations.

After the calculations, Eutocius's closing remarks offer a defense of Archimedes against accusations that his approximations to the perimeter-diameter ratio of a circle are not as accurate as they could have been. He starts by mentioning Apollonius's approximations in his Rapid Delivery (' $\Omega \cup \tau \circ ́ x \iota \circ \nu)$, which were indeed more accurate than those of Archimedes but not useful toward Archimedes's goal, which was to find numbers that would be useful in real life. Therefore, the criticisms of Sporus of Nicaea against Archimedes that the latter did not find a straight line equal to the perimeter of the circle are wide of the mark. According to Eutocius, Sporus says in his Ceria that his own teacher, Philo of Gadara, found more accurate approximations than those of Archimedes (that is, $31 / 7$ and $310 / 71$). However, all of these writers have ignored Archimedes's goal, which was to find approximations

[^7]that would be practical. Instead, they used multiplications and divisions involving myriads, which are difficult to understand for one not versed in advanced logistics, such as that of Magnus. In fact, anyone wishing to obtain more accurate results could simply have used Ptolemy's approach in the Syntaxis. Eutocius adds that he could have done so, but did not, since he knew that to find a straight line equal to the perimeter of a circle is impossible and, in any case, Archimedes's approach suffices to find more accurate results. ${ }^{28}$

The brief summary presented here and in Section I.1.2 makes it clear that $M C$ had a significance that was out of proportion to its short length in the Greek mathematical sciences of Late Antiquity. Hero of Alexandria and the writers of the metrical works transmitted under his name were evidently interested in the $M C$ due to its subject. However, $M C$ was also important in Greek astronomy, where the shape and the size of Earth had been a central concern from very early on; one need only remember, for example, the various arguments for the sphericity of Earth given by Aristotle and the measurements made by Eratosthenes of its circumference. ${ }^{29}$ Finally, $M C$ was a treatise whose content was crucial for writers on isoperimetric figures.

I. 2 Reception of Measurement of the Circle in Arabic among Abbasid Scholarly Circles in the Ninth Century

I.2.1 Ibn al-Nadīm on Measurement of the Circle

In contrast to his reports on Euclid's Elements and Ptolemy's Almagest, ${ }^{30}$ Ibn alNadìm gives no details on the question of who translated the works of Archimedes into Arabic. On the Sphere and the Cylinder and a work titled The Quadrature of the Circle, presumably $M C$ itself, are mentioned at the beginning of the list of the works of Archimedes given by Ibn al-Nadīm. ${ }^{31}$

[^8]
I.2.2 Al-Kind̄̄'s Epistle to Yūhannā̄ ibn Māsawayh on the Third Proposition of Measurement of the Circle

Abū Yūsuf Ya'qūb ibn Isḥāq al-Kindī (ca. 801-ca. 866) was an Abbasid scholar of the 9th century who wrote hundreds of works that cover a wide range of topics such as philosophy, logic, arithmetic, music, geometry, astronomy and astrology, psychology, politics, and medicine.

Most of the mathematical works of al-Kindī are lost. However, even a cursory examination of the titles of these works reveals that al-Kindī had an abiding interest in the geometrical properties of circular and spherical figures and their applications to astronomy. As examples, we may note the following mathematical and astronomical works, whose subjects display striking overlap with those of the Greek texts mentioned in Section I.1.2. This overlap goes a long way in explaining al-Kindi's interest in $M C$, which shall be treated in more detail below. ${ }^{32}$

[^9]- 43: That the world and everything in it is spherical in shape (F̄ anna al- ${ }^{〔} \bar{a} l a m$ wa-kullamā fìhi kuriyy al-shakl),
- 45: That the largest solid shape is the sphere, and the largest plane figure is
 jamí al-ashkāl al-basīta),
- 47: On the flattening (projection) of a sphere (F̄ tasț̄̄h al-kura), ${ }^{33}$
- 81: The proposition of Archimedes on the approximation of the ratio between the diameter of a circle and its circumference (Qawl Arshimīdis f̄ taqrı̄b qadr quṭr al-d \bar{a} ira min muḥititiha $),{ }^{34}$
- 83: On the approximation of the chord of the circle (Fi$t a q r \imath \bar{\imath} b$ watar al-d $\left.\bar{a}^{\prime} i r a\right)$,
- 84: On the approximation of the chord of the ninth ($F \bar{\imath}$ taqrīb watar al-tus ${ }^{\wedge}$),
- 85: On the measurement of an $\bar{\imath} w \bar{a} n(F \bar{\imath}$ mis $\bar{a} h ̣ a t ~ \bar{\imath} w \bar{a} n),{ }^{35}$
- 87: On the manner of constructing a circle whose area is equal to the surface of a given cylinder ($F \bar{\imath}$ kayfiyyat 'amal d \bar{a} ’ira musāwiya li-saṭh usṭuwāna mafrū$d a$).

A discussion of the shape and size of the earth in an astronomical work of alKind $\bar{\imath}$ titled The Great $\operatorname{Art}\left(F \bar{\imath}\right.$ al-s sin $\bar{a}^{`} a$ al- $\left.{ }^{`} u z m \bar{a}\right)$ provides evidence that all three propositions of $M C$ were known to him (Rashed 1993, 12-13; Ahmad 1987, 174176). ${ }^{36}$

We find al-Kindì's deepest engagement with $M C$ in an epistle, whose title has already been given under number 81 in the above list, to Yūḥannā ibn Māsawayh (d. 857). ${ }^{37}$ From the beginning of the epistle, we learn that Yūḥannā ibn Māsawayh had

[^10]asked al-Kindī to explain the proof of MC 3 in detail. Al-Kindī agrees to provide an explanation, saying "it is possible in this case to extend the statement and to expand it in a way which would not be necessary in this art for those people who are well-versed in it" (Rashed 1993, 32), which suggests that al-Kindī did not consider Yūḥannā ibn Māsawayh to be "well-versed" in geometry, even though it is clear that Yūhannā must have been familiar with at least some of Euclid's Elements, as the references to the Elements in the epistle indicate. ${ }^{38}$

The details of the proof and calculations of MC 3 take up the rest of the epistle. For the first part of the proof of $M C 3$, where Archimedes uses a regular 96 -gon circumscribed around a given circle in order to obtain the upper bound of $31 / 7$ for the perimeter-diameter ratio, al-Kindī starts with a justification of the inequality

$$
\frac{265}{153}<\sqrt{3}
$$

used by Archimedes; he does not, however, attempt to explain the choices of the numbers 265 and 153. He proceeds to the calculations associated with the bisections. For the second part of the proof, al-Kindī starts by constructing a side of the regular 96 -gon inscribed in the given circle using four angle bisections. After that, his way of proceeding is similar to the first part: first, a justification of the inequality

$$
\sqrt{3}<\frac{1351}{780}
$$

without, again, attempting to explain the choices of the numbers, followed by the calculations associated with the bisections.

The repeated references to the Elements in the epistle, ${ }^{39}$ the detailed calculations of the various side lengths, and the repeated statements of the number of sides of the regular polygons that can be constructed with the various sides are all consistent with al-Kindī's stated desire to help Yūḥannā ibn Māsawayh in understanding MC 3.

I.2.3 Banū Mūsā's Book for Knowing the Measurement of Plane and Spherical Figures

The Banū Mūsā were three brothers-Muḥammad (d. 873), Aḥmad, and al-Ḥasanwho worked as courtiers, ministers, and scholars in the 9th century, with the focus of their scholarship on mathematical sciences. They were the authors of a work on

[^11]the measurement of geometric figures, extant in a Latin translation made by Gerard of Cremona (ca. 1114-1187) under the title Verba filiorum Moysi filii Sekir, i.e. Maumeti, Hameti, Hasen as well as an edition made by Naṣīr al-Dīn al-Ṭūsī (12011274) under the title Book for Knowing the Measurement of Plane and Spherical Figures (Kitāb ma'rifat misāḥat al-ashkāl al-basīta wa-l-kuriyya). ${ }^{40}$

The treatise contains an introduction by the Banū Mūsā followed by 18 (Naṣir al-Dīn al-Ṭūsī) or 19 (Gerard of Cremona) propositions. The introduction starts with a justification for the composition of the work. ${ }^{41}$ The Ban \bar{u} Mūsā claim that there is a need for the science of measurement of geometric figures, but that none of their contemporaries properly understands this science (Clagett 1964, 238-239). Even though "there are some things which some of the early savants understood and wrote about in their books," the knowledge of such things is available but not common in the Banū Mūsā's time (Clagett 1964, 239). The authors also make it clear that they assume a working knowledge in the "books of geometry in common usage" in their time (Clagett 1964, 241). These remarks are followed by a discussion of the concepts of length, width, and breadth of geometric figures (Clagett 1964, 240-244).

Propositions 2-6, which are the same for both versions, concern the area and the perimeter of the circle, with Propositions 2 and 3 used as preliminary results in the proofs of the later propositions. Proposition 4 states that the product of half of the diameter of any circle with half of its perimeter is equal to the area of the circle. This is of course equivalent to $M C 1$ but the proof is different. Proposition 5 states that the ratio of the diameter of any circle to its perimeter is unique, which is not proved in the extant Greek text of $M C$. Proposition 6 takes up the calculation of the perimeter-diameter ratio according to "the method used by Archimedes" (Rashed 1996, 74-75), but it is supplemented with the intermediate calculations, in the same way as in Eutocius's commentary or al-Kindi's epistle. Thus, the evidence of Propositions 4-6 indicates that the Banu Mūsā were already familiar with the contents of $M C$ by the time of the composition of their treatise.

[^12]
I.2.4 Thābit ibn Qurra's Measurement of Plane and Solid Figures

Finally, brief mention must be made of the appearance of the contents of $M C$ in the treatise Measurement of Plane and Solid Figures (Fī misāhat al-ashkāl al-musatṭaha wa-l-mujassama) by Thābit ibn Qurra (d. 901), another outstanding mathematical scholar of the 9th century. ${ }^{42}$ After the areas of rectilinear plane figures, Thābit considers "figures with curvature" (al-ashkāl dhawāt al-taqwīs) and the first of these is the circle (Rashed 2009b, 191.11-12). First, the area of the circle is equal to the product of half of its diameter with half of its perimeter, which is equivalent to $M C 1$. And if the diameter of the circle is known, the perimeter can be known approximately by multiplying the diameter by $31 / 7$, which is equivalent to using the upper bound for the perimeter-diameter ratio given in MC 3. The area of the circle can also be found approximately by multiplying the diameter by itself and then removing $1 / 7$ of the result and then half of $1 / 7$ of the result, which is equivalent to MC 2 (Rashed 2009b, 191.12-19). Thābit also discusses the area of the sector of the circle, which is equal to the product of half of the diameter with half of the length of the arc of the sector (Rashed 2009b, 191.22-193.2). Nowhere in discussions of the measurement of the area and perimeter of a circle does Thābit explicitly mention the name of Archimedes. However, he does so later on three times in discussions concerning the area and volume of a sphere and the area of a segment of a sphere, also mentioning On the Sphere and the Cylinder by name once (Rashed 2009b, 195.28, 199.1-6, 209.1-3). Since Thābit was not only an associate of the Banū Mūsā but a competent mathematical scholar in his own right, and since $M C$ and Archimedes's authorship of it was known among Abbasid scholars since the mid-9th century at the latest, ${ }^{43}$ it is very likely that Thābit was in fact familiar with $M C$ and its mathematical details.

I. 3 The Arabic, Latin, and Hebrew Texts of Measurement of the Circle

I.3.1 The Fatih Version

Of the three Arabic versions of $M C$ edited in this article, the Fatih version, extant in two manuscripts, ${ }^{44}$ is the one that has received the most attention from historians of mathematical sciences. Presumably, the reason for this interest is that one manuscript containing it, namely İstanbul, Süleymaniye Manuscript Library,

[^13]Fatih 3414, has been known to historians of mathematics since 1936 at the latest. ${ }^{45}$ Despite this interest, no critical edition of the Fatih version has appeared so far. However, the Fatih version has been studied in detail by Knorr (1989, 421-494) as part of a more wide-ranging study on the medieval tradition of MC. Knorr (1989, 455-463) also includes a facsimile of the folios of Fatih 3414 containing the Fatih version. Unfortunately, these reproductions are not of good quality: not only does the Arabic text look thicker than it is in reality, the lines in the diagrams appear faded. It is therefore difficult to use these images for critical study. The English translation of the Fatih version that Knorr provides is accurate, despite a style that is sometimes excessively literal (Knorr 1989, 436-438, 484-489). He also provides a convenient collection of variant readings between the Fatih version and the Hebrew and Latin versions (Knorr 1989, 438-441, 489-491).

One feature of the Fatih version deserves brief comment, and that is that the first two of the three numbers in MC 3 that are greater than 10000 are either transmitted or translated incorrectly in the Fatih version. These numbers are 349450 and 23409, which appear in the Fatih version as 9450 and 3409, respectively. Knorr (1989, 482483) explains these corrupted numbers as the result of a scribal error, based on the presence of the correct forms of these numbers in the Latin translation of Gerard of Cremona and the Greek text of $M C$ itself. ${ }^{46}$ I argue below that the correct numbers in the Latin translation of Gerard of Cremona are due to deliberate correction. ${ }^{47}$ As to the corrupt numbers in the Fatih version, since both of them lost their multiples of 10000 , it is an ad hoc explanation to consider them as scribal errors. Indeed, using other numbers in Fatih 3 as templates, we see that the number 23409 would have been rendered as al-thalātha wa-l-'ishrīn alfan wa-l-arba'imi'a wa-l-tis'a, and 349450 would have been rendered as al-thalāthimi'a wa-l-tis'a wa-l-arba'̃n alfan wa-l-arba'imi'a wa-l-khamsin (both genitive). In order for 23409 to be corrupted into 3409, the second word (wa-l-ishrinn) would have to be dropped and the third word (alfan) would have to be changed into alf. For 349450 to be corrupted into 9450, the first and third words (al-thalāthimi'a and wa-l-arba'in) would have be dropped and the fifth word (alfan) would again have to be changed into alf. A more economical explanation of these corruptions would take into account the numerical representation of multiples of 10000 , which are written in Greek with M with the number of 10000 s on top,

[^14]since one letter with one or two letters on top of it representing numbers would more easily be corrupted in transmission or be translated erroneously.

I.3.2 Columbia Preliminaries and the Columbia Version

The Columbia version is preceded by another text, henceforth called Columbia Preliminaries, in the unique manuscript containing it, namely New York, Columbia University Rare Book and Manuscript Library, Or. 45. Columbia Preliminaries consists of four propositions, and it is edited and translated in this article in addition to Columbia.

Columbia Preliminaries carries the name of an author in the manuscript whereas Columbia does not. I follow Knorr (1989, 543, 552) in reading that name as Abū al-Rashīd 'Abd al-Hādī, even though the last word might equally be al-Bāri'. He also suggests that the author of both Columbia Preliminaries and Columbia was one Abū al-Rashīd Mubashshir ibn Aḥmad ibn 'Alī ibn 'Umar al-Rāz̄̄, a brief notice about whom can be found in Suter (1900, 126). Suter in turn bases his information on Ibn al-Qifṭī (Lippert 1903, 269-270). According to Ibn al-Qifṭī, this Abū al-Rashīd Mubashshir ibn Aḥmad was "very skilled in calculation, properties of numbers, and algebra" (kathīr al-macrifa bi-l-hisāb wa-khawāṣs al-acdād wa-l-jabr wa-l-muqābala), as well as other subjects; he died in 1193 (AH 589) (Lippert 1903, 269.11-12, 270.3). Knorr's identification of Abū al-Rashīd 'Abd al-Hād̄̄ with Abū al-Rashīd Mubashshir ibn Aḥmad is based on the occurrence of a supposed "from the calculator" (min al$h \bar{a} s i b)$ in the manuscript. However, this reading is wrong and it should read "from the margin" (\min al-ḥāshiya). ${ }^{48}$ It follows that there are no grounds for identifying Abū al-Rashīd 'Abd al-Hādī with Abū al-Rashīd Mubashshir ibn Aḥmad.

In view of some terminological differences between Columbia Preliminaries 13 and Columbia, it is certain that they were authored by different individuals. ${ }^{49}$ In Columbia Preliminary 1, a square is a murabba‘ mutasāw̄ al-adlāč. The area bounded by the line alif jīm and the arc alif j̄ $\bar{\imath} m$ is referred to as a qaws. In Columbia Preliminary 2, qaws is again used to refer to areas bounded by a line and and arc having the same endpoints. Finally, in Columbia Preliminary 3, a square is again referred to as a murabba‘ mutas $\bar{a} w \bar{\imath}$ al-adla $\bar{a}^{c} .{ }^{50}$

We find similar uses of the term murabbac mutas $\bar{a} w \bar{\imath}$ al-adl \bar{a}^{c} in two early 9thcentury algebra texts. These are al-Khwarizmi's Kitāb al-jabr wa-l-muqābala and

[^15]Ibn Turk's Al-darū̄rāt fı̂ al-muqtarināt min kitāb al-jabr wa-l-muqābala. ${ }^{51}$ The two authors are most likely roughly contemporary (Sayll 1985, 91). Sayılı (1985, 84) has already drawn attention to the ways Ibn Turk and al-Khwarizmī use the word murabbac. Ibn Turk typically refers to squares as "equilateral right-angled quadrilateral surface" (sath murabba‘ mutasāw̄ al-adlā̄‘ qāaim al-zawāy $\bar{a}) .{ }^{52}$ In contrast, al-Khwarizmī mostly refers to squares and rectangles indiscriminately as "surface" (sath), but he also uses "square surface" (sath murabbac) and he sometimes specifies that with "equilateral and equiangular" (mutasāw̄ al-adlā̄ \bar{a}^{c} wa-l-zawāyā). ${ }^{53}$ Based on these varying uses of the word murabbac, Høyrup (1986, 474, n. 28) suggests that "the value of murabbac was changing first in the circle of court mathematicians around Al-Ma'mūn." If this is correct, this may indicate that Columbia Preliminaries 1-3 were composed in the first half of the 9th century and hence that $M C$ was known to mathematical scholars in Abbasid society at that time.

We also find in al-Khwarizmī a usage of qaws similar to that in Columbia Preliminaries 1 and 2 , a fact that may strengthen the suggestion made above on the date of composition of Columbia Preliminaries. In the chapter on measurement in the Kitāb al-jabr wa-l-muqābala, al-Khwarizmī describes how to calculate the "area of the arc" (taksīr al-qaws) (Rashed 2009a, 207.4, 10). The procedure involves taking the difference between a sector of a circle and a triangle. The fact that the phrase taksīr al-qaws is repeated twice makes it unlikely that a scribal error is involved and that qaws refers to the region bounded by an arc and its chord, just as in Columbia Preliminaries. ${ }^{54}$

Columbia 1 and 2, which correspond to Fatih 1, are not different from it in the essential ideas of the proofs, but the diagrams are drawn differently and have different letterings. ${ }^{55}$ Fatih does not label the points around the circle and the circumscribed and inscribed polygons completely, whereas Columbia does. Moreover, in the labeling of the letters around the circle in Columbia 1, there is a peculiarity which may have implications for the circumstances of the composition of Columbia. After labeling the corners of the square in the circle with alif through $d \bar{a} l$ and the corners of the triangle with $h \vec{a}$) through $h \vec{a}$, Columbia 1 labels the cardinal points on the circle with $t \bar{a}$ ' through $m \bar{\imath} m$ counterclockwise, skipping $y \bar{a}$. Next, it starts to la-

[^16]bel the midpoints of the eighths of the circle, again counterclockwise, starting with $n \bar{u} n$. It then uses $s s \bar{a} d$ for the next one, which shows that the author is using the "Western" system of abjad notation. The same usage is also found in the diagram of Columbia 2, where $s \bar{a} d$ is used after $n \bar{u} n$ for a corner of the octagon, again in the counterclockwise direction. It has recently been suggested by Thomann (2018, 167) that the "Eastern" system of abjad notation has developed in conjunction with the Arabic translations of Syriac and Greek astronomical texts in the first half of the 9 th century and that the "Western" system is older than the "Eastern" one. Together with the suggestion I have made above that the terminology of Columbia Preliminaries indicates a date of composition in the first half of the 9th century, one is tempted to see a similar date of composition for Columbia as well, though obviously not by the same person. However, I see no reason why a composition by an individual in the Maghrib can be ruled out.

A textual comparison makes it clear that the enunciation of Columbia 4 is closer than that of Fatih 3 to a literal translation of the Greek text of MC 3: Fatih 3 has

while Columbia 4 has

and MC 3 has

It is also obvious that the enunciation of Fatih 3 is mathematically sounder than the one in Columbia 4 and the Greek text of MC 3. In the latter, the perimeter of the circle is said to be, first, three times the diameter, then is said to yet also exceed it by an amount between $1 / 7$ and $10 / 71$ of the diameter, which makes for a clumsy wording since it implies that the same thing is equal to another thing and yet exceeds it. By contrast, in Fatih 3, the perimeter exceeds three times the diameter by an amount between $1 / 7$ and $10 / 71$ of the diameter, which is a mathematically correct wording. Except for these initial divergences between Columbia 4 and Fatih 3 , the rest of the two enunciations are nearly identical, except at the very end, where a simple minhu in Columbia 4 corresponds to min al-qutr in Fatih 3.

An examination of Table 1 suggests that neither the epistle of al-Kindī nor the Book for Knowing the Measurement of Plane and Spherical Figures of the Banū Mūsā is likely to be among the source(s) of Columbia 4 and 5. The fractions in Eutocius's commentary on $M C$ that are missing in the epistle of al-Kindī and the treatise of the Banū Mūsā are for the most part present in Columbia; the two exceptions to this are 5448723 and 5472132 , which have no fractions.

Table 1: Some numbers in Eutocius's commentary on $M C$ and various other texts

Eutocius	al-Kindī	Banū Mūsā (al-T̄̄̄sī)	Banū Mūs̄̄ (Gerard)	Columbia
$1350534 \frac{1}{2} \frac{1}{64}$	1350534	1350534	$1350534 \frac{1}{4}$	$1350534 \frac{1}{2} \frac{1}{64}$
$1373943 \frac{1}{2} \frac{1}{64}$	1373943	1373943	$1373943 \frac{1}{4}$	$1373943 \frac{1}{2} \frac{1}{64}$
$5448723 \frac{1}{16}$	5448723	5448723	5448723	5448723
$5472132 \frac{1}{16}$	5472132	5472132	5472132	5472132
$4064928 \frac{1}{36}$	4064928	4064928	4064928	$4064928 \frac{1}{36}$
$4069284 \frac{1}{36}$	4069284	4069284	4069284	$4069284 \frac{1}{36}$

In Columbia 3, numbers are expressed in lexical numerals as in Fatih $2 .{ }^{56}$ The same is generally true in Columbia 4; one obvious change is the repeated use of the word ribwa ("ten thousand, myriad") to express multiples of 10000 . This word appears for the first time to express $13505341 / 21 / 64$. Even though the numbers 23409,326041 , and 349450 , all of which involve multiples of 10000 , had appeared before, none of them is expressed with ribwa. Toward the end of Columbia 4, HinduArabic numerals are first used to write 5448723 after the 500 myriads (where 500 is written in lexical numerals). Hindu-Arabic numerals are used consistently until the end of Columbia 4, where the last two numbers in the proposition, namely 4673 $1 / 2$ and 96 , are again written in lexical numerals. There seems to be no discernible pattern to this usage of Hindu-Arabic numerals.

I.3.3 The Riżā Version

The principal difference of the Riz $\bar{a} \bar{a}$ version compared to Fatih or Columbia is its organization: Rizīa 2 corresponds to Fatih 3, whereas Riż̄a 3 corresponds to Fatih 2. Since the proof of Fatih 2 uses the result of Fatih 3, this arrangement is mathematically sounder. The proof of Rizīa 3 is different from that of Fatih 2, but with no

[^17]noticeable shortening or clarification. There is also what seems to be an interpolation in Riz $\bar{z} 3 .{ }^{57}$ The appearance of the words "their counterparts" (nazā \bar{a} 'iruhum $\left.\bar{a}\right)$ and "contradiction" (khulf) in Ri $\dot{z} \bar{a} 1$, which do not appear in Columbia 1 and 2, suggests that a text that was closely related to the Fatih version was used a source for the Riz \bar{a} version. This suggestion is strengthened by the fact that Ri$\dot{z} \bar{a} 1$ never mentions all objects around the diagram by letters as Columbia does, but rather mentions the first occurrence of such objects with letters and then simply states that the same argument holds for the remaining objects, as Fatih does.

Just like Columbia 4 and 5, Riz $\bar{z} 2$ is closely related to Fatih 3 but it is expanded with the intermediate calculations. A phrase found in Riz $\bar{a} 2$ allows us to state with certainty that an Arabic version of Eutocius's commentary on $M C$ was used as a source for Riz \bar{a}. After taking the difference $93636-23409=70227$, Riz $\bar{z} \bar{a} 2$ takes the square root of this number as 265 , and states that the line $B G$ is greater than 265 "by an insignificant amount imperceptible to the senses" (bi-shay' yasīr lā
 $\alpha \nu \varepsilon \pi \alpha i \sigma \vartheta \eta \tau \circ \nu$ that is used to describe the excess of the square root of 70227 over 265 in Eutocius's commentary on $M C$ (Heiberg 1880-1881, III.272.7). ${ }^{58}$ Since such close correspondence in two verbal expressions for the same mathematical object is unlikely to be the result of mere coincidence, we have to conclude that an Arabic translation of Eutocius's commentary or a closely related text was used as a source for the Riz \bar{z} version.

Riz $\bar{a} \bar{a} 2$ differs from Fatih 3 and Columbia 4 and 5 in that the numbers are often expressed in the sexagesimal abjad system. This system is first used to write the square root of 349450 as $591 ; 8,34$ where the 591 is written in Hindu-Arabic numerals and the fractional parts are written in sexagesimal abjad. From then on, sexagesimal abjad is used to write the fractional parts of the numbers appearing in intermediate calculations as well as the integer parts of some large numbers (with at least four sexagesimal places).

In Riz \bar{a}, the numbers found in $M C 3$ and Eutocius's commentary were not simply converted to sexagesimal, but the calculations seem to have been redone from scratch. One example of this, among many others, is the number 591;8,34 mentioned above, corresponding to $M C^{\prime}$ s $5911 / 8$, which would have been expressed in sexagesimal as $591 ; 7,30$. Another clear sign of a recalculation of the numbers is given by the small numerical errors in the text. These, however, are not so large as to invalidate the conclusions of $\operatorname{Ri} \dot{z} \bar{a} 2$.

[^18]
I.3.4 The Hebrew Translations of Measurement of the Circle

There are two known Hebrew translations of $M C$ made in the Middle Ages, which have recently been edited and translated into French by Lévy (2011). ${ }^{59}$ Neither translation carries the name of a translator. One of them (henceforth denoted HA, following Lévy), closely related to the Fatih version, is extant in a single manuscript, ${ }^{60}$ and its existence has been known since the end of the 19th century. HA contains only the translations of MC 1 and 2 , and part of the enunciation of $M C$. The second translation (henceforth denoted HB, again following Lévy), which was identified by Lévy, is extant in two manuscripts, ${ }^{61}$ and it contains only the translation of MC 1. A comparison of the texts of HA and HB reveals that they have different sources.

A number of observations on similarities between HA and HB and the Arabic versions edited in this article may be made which, while quite weak if taken in isolation, together might indicate that Arabic versions related to the Columbia and Riżā had been in circulation in Western Europe when the Hebrew translations were made.

First, the diagram for $M C 1$ in HA is, as Lévy $(2011,113)$ points out, different from the diagram in the Fatih version and the two Latin translations in that it presents two circles/squares for the two parts of the proof, but it should be noted that the diagram in HA is similar to the diagram in the Columbia version. The circle/square on the left in HA resembles the diagram of Columbia 1 in that both have a circle and an inscribed square with horizontal and vertical sides. In addition, HA has the sides $B F$ and $F A$ of the inscribed octagon obtained by subdividing the arc $B A$ in two halves at F, which is similar to the diagram of Columbia 1 (although of course Columbia draws the octagon in its entirety). The line segments NS in HA and PF in Columbia 1 are similarly positioned, from the center to the lower left (HA) or the lower right (Columbia 1). The similarities for the diagrams for the first part of MC 1 in HA and Columbia 1 are unlikely to be independent inventions. However, the lettering in both diagrams are completely different. Likewise, the circle/square on the right in HA resembles the diagram of Columbia 2 but not only are some lines in Columbia 2 are absent in HA, the lettering in the two diagrams are completely different.

Secondly, the enunciation of MC 1 in HB agrees particularly closely with the enunciation of Riziā 1:

[^19]and

These two enunciations have the following similarities to the enunciation in the Fatih version, in distinction to the Columbia version: First, they follow the radiusperimeter order in stating the equalities for the legs of the triangle, and second, the words and expressions used for the right-angled triangle are definite. They differ from the Fatih and Columbia versions in that they both have words to denote areas, even though these words do not correspond to each other phonetically (Arabic basīt, Hebrew שטח) and only one instance is used in Rizīa (for the circle) where HB uses two (one for the circle and one for the triangle). However, at the end of the proof of MC 1 in the Rizā version, we see the Arabic sath used (fa-saṭh al-dāira ka-saṭh al-muthallath), which corresponds phonetically to the Hebrew שטח.

The instantiation of MC 1 in HB has the following similarities to the instantiations in both the Columbia and Rizī̄ versions: HB and Rizīa agree in introducing the circle $A B G D$ followed by an identification of its center E; in contrast, Fatih and Columbia both introduce the center further into the proof. Second, both HB and Columbia describe the right-angled triangle by its three vertices and they specify at which one the right angle is located, whereas Fatih refers to the right-angled triangle by one letter E and Riz \bar{a} does not refer to it by any letter at all.

I.3.5 The Latin Translations of Measurement of the Circle

Approximately one century before William of Moerbeke (b. ca. 1220-1335; d. before 1286) translated many of the works of Archimedes from Greek into Latin, MC had already been translated twice into Latin from Arabic. These translations, both of which are closely related to the Fatih version, have been edited by Clagett (1964, 1558). ${ }^{62}$ The first translation, which is anonymous, and extant in three manuscripts, ${ }^{63}$ has been conjectured by Clagett $(1964,17)$ to have been made by Plato of Tivoli (fl. first half of the 12th century). Clagett's reason for suggesting that Plato of Tivoli was the translator of this translation, which shall henceforth be denoted $\mathbf{L P}$, is the

[^20]fact that the text of $\mathbf{L P}$ follows Plato's translation of the Liber Embadorum of Abraham bar Hiyya from the Hebrew in the main manuscript (Bibliothèque Nationale, Lat. 11246).

LP contains Latin translations of an Arabic text closely related to Fatih 1, Fatih 2, and the first half of Fatih 3. Clagett $(1964,17)$ points out that there are numerous errors in the rendering of numbers in Proposition 3; he is quick to add that these could be due to a scribe rather than to the translator. ${ }^{64}$ While an examination of Clagett's critical apparatus shows many such instances to be simple scribal errors indeed, a few are due rather to the deficiencies of the numbers in Fatih 3 itself. The most obvious of these are the numbers 349450 and 23409 in the first half of Proposition 3. Bibliothèque Nationale, Lat. 11246, and following it, the other two manuscripts, do not have the multiples of 10000 in these two numbers. Clagett $(1964,26.87)$ corrects these numbers, but, as explained above, ${ }^{65}$ the absence of the multiples of 10000 in these two numbers is due to errors in the transmission of the Fatih version and not to a scribal error. The third number greater than 10000 in the first half of Proposition 3, namely 14688, is correctly rendered, as it is in the Fatih version. Another such example is the absence of et unius octave in $5911 / 8$ (Clagett 1964, 26.89). The fraction $1 / 8$ is also absent in the two Arabic manuscripts of the Fatih version. The Arabic copy with which Plato worked, then, possibly had a common ancestor with these two Arabic manuscripts.

The argument by Clagett (1964, 30-31) that the second translation, which is also anonymous on all extant manuscripts, is in fact by Gerard of Cremona (ca. 11141187), is convincing. This translation will henceforth be denoted LG. His argument is based on the presence of $\mathbf{L G}$ in a manuscript dedicated to Gerard's works, terminological similarities between LG and other works of Gerard, and the mention of an item Archimenidis tractatus I in a document, written after Gerard's death by some of his associates, containing the list of his translations. ${ }^{66}$ Since Gerard is not known to have translated any other work of Archimedes, this reference is likely to $M C$. Judging by the relatively high number of extant manuscripts (twelve), LG seems to have been much more popular than LP; possibly this was due to Gerard's

[^21]prestige as a translator. This popularity is also indicated by the fact that several other Latin texts about the circle quadrature problem composed during the Middle Ages took LG as a source. LG contains translations of all three propositions of the Fatih version.

A comparison of numbers in the first half of Proposition 3 in Fatih and LG leads us to temper Clagett's $(1964,31)$ judgement about the "accuracy regarding numbers" of LG. While Clagett never makes this explicit, it may be surmised that a major factor in his assessment is the correct rendering of the numbers 349450 and 23409. As I have argued above, these numbers must have appeared as 9450 and 3409 in Fatih $3 .{ }^{67}$ The fact that they appear correctly in LG, then, must be due to a correction, either by Gerard himself or by someone else in either the Latin or Arabic tradition. Indeed, anyone who had studied the proof of Proposition 3 and was competent in arithmetic would have been able to compute the correct forms of the numbers, since $349450=571^{2}+153^{2}$ and $23409=153^{2}$.

II Description of the Manuscripts

I have obtained the list of manuscripts to use from $\operatorname{Sezgin}(1974,131)$. Of the seven manuscripts listed by him, two (Esat 2034 and Sipahsālār 690) contain the text of Nașīr al-Dīn al-Ṭūsiss tahrīr of $M C$ and they have not been taken into consideration. I have also been unable to obtain a copy of a third manuscript (Leningrad GPB 144). The remaining four manuscripts are described below according to the versions they were used to establish.

II. 1 The Fatih Version

The Fatih version was established using the following manuscripts:
F: İstanbul, Süleymaniye Manuscript Library, Fatih 3414, 1286 (AH 684)
Since I have described this manuscript in some detail before (Coşkun 2018, 61-63), I shall give only a summary here. This carefully written and drawn manuscript of 75 folios was copied by Muḥammad ibn 'Umar ibn Abī Jarāda (henceforth Ibn Abī Jarāda), who lived in the 13 th century (aH 7 th century). ${ }^{68}$ It contains the Fatih version of $M C$ (ff. 2v-6v), an Arabic translation of On the Sphere and the Cylinder, part of an Arabic translation of Eutocius's commentary on On the Sphere and the Cylinder, and finally, an Arabic translation of a work titled Ma'khūdhāt Mansūba ilā Arshimídis. The colophons give the years of copying as 1277 (AH 676) for On the Sphere and the Cylinder and as 1286 (Aн 684) for Eutocius's commentary on On the

[^22]Sphere and the Cylinder and Ma'khūdhāt Mansūba ilā Arshimūdis. The colophon for the Fatih version does not give a date.

The title for the Fatih version is written on top of f. 2v with large letters in red ink. The propositions are numbered using the Arabic abjad system, again with large letters in red ink. Proposition 3 is mistakenly divided into two propositions, according to the two halves of the proof. ${ }^{69}$ There is one scholium on f. 6 r , written in the same hand as the text but with red ink. There is water damage affecting mostly, but not exclusively, the bottom parts of the pages.

H: Bursa, İnebey Manuscript Library, Haraç̧̧oğlu 1174, possibly 14th century

This manuscript that contains 47 folios with 23 lines per page probably dates from the 14th century. ${ }^{70}$ The folio numbers are written at the upper left corners of the rectos, once with Arabic positional numerals and once with modern Western numerals. However, there is a difference between the two numerations, with the Arabic positional numbers running from 98 to 144 and the modern Western numerals running from 1 to $47 .^{71}$ In addition to these, there is another folio at the beginning of the manuscript that is marked as " 8 " in Arabic positional numerals. This indicates that a chunk of the manuscript with 89 folios dropped just after this folio and another chunk of 7 folios dropped from just before it.

The text and the diagram letters are written in one hand in a readable naskh $\bar{\imath}$ with brown ink, with pointing often provided. The diagrams are carefully drawn and there are no empty spaces in which a diagram should have been drawn but was not. Individual propositions are not numbered. Rather, the subdivisions of the text, including the beginnings of propositions, are marked with a purple bar over the first few words. Occasionally, some letters have been retraced, and some corrections

[^23]made, with a pen with a thicker nib and with black ink; as far as I can tell, these are in the same hand as the main text.

The works in the manuscript are as follows: ${ }^{72}$
 nor a colophon for this text. The identification of the text as a copy of the Fatih version is on the basis of a comparison with the corresponding text in \mathbf{F}.
2. Maqālat \bar{a}^{73} Arshim $\bar{\imath} d i s ~ f \bar{\imath}$ al-kura wa-l-usțuw $\bar{a} n a: ~ f f . ~ 4 v-47 r$. The title is written in the same way as the surrounding text. Just below the title is the expression iṣlāh Thābit ibn Qurra ("correction of Thābit ibn Qurra"). The two colophons for this text (at the end of the two books) carry neither dates nor names of copyists.

II. 2 Columbia Preliminaries and the Columbia Version

The Columbia version is preceded by another text, which I call Columbia Preliminaries in this article and which consists of four preliminary propositions. Columbia Preliminaries and the Columbia version were established using the following manuscript:

C: New York, Columbia University Rare Book and Manuscript Library, Or. 45 , possibly 13 th or 14 th centuries

Since a detailed description of this manuscript, which possibly dates from the 13 th or 14 th century, can be found online, I shall give only the details relevant to Columbia Preliminaries and the Columbia version. ${ }^{74}$ Most of the manuscript, including the two texts edited in this article, is written in the same hand in a readable naskh $\bar{\imath}$

[^24]with brown ink. ${ }^{75}$ Pointing is often provided. The diagrams are carefully drawn and there are no empty spaces left for diagrams.

Following Knorr (1989, 543-546, 552-576), I have edited Columbia Preliminaries and the Columbia Version from the following two texts:

1. (Columbia Preliminaries) Ashkāl nāfía fî kitāb Arshimīdis: ff. 24r-25r. The title is written at the first line of the text and in the same way as it. The colophon carries neither a date nor the name of the copyist. Only two propositions in this text are numbered with the Arabic abjad system. ${ }^{76}$
2. (Columbia) Qawl mansūb ilā Arshimīdis f̄̂ misāhat al-dā̉ira: ff. 25r-30v. The title is written at the first line of the text and in the same way as it. The colophon carries neither a date nor the name of the copyist. The proposition numbers, which are not consistently given, are written as Arabic abjad numbers, either in the text or next to the diagrams. ${ }^{77}$ For Columbia 4 (corresponding to the first half of Fatih 3) there are eight scholia; all but the first are written in a different hand $\left(\mathbf{C}^{\mathbf{2}}\right)$ and in darker ink. For Columbia 4 and Columbia 5, a third hand $\left(\mathbf{C}^{3}\right)$ marks certain parts of the text as interpolations. It therefore seems that one scribe carelessly copied some marginal notes in the exemplar into the main text and another scribe then tried to correct this by crossing these parts out. Numbers in this text are written variously as lexical numerals and Hindu-Arabic numerals. ${ }^{78}$

II. 3 The Riż \bar{a} Version

The Rizī̄ version was established using the following manuscript:
R: Mashhad, Central Library of $\bar{A} s t a \overline{n-i}$ Quds-i Riżav̄̄, 5634, date unknown
This manuscript contains six folios, with 21-23 lines per page. The folio numbers are written at the upper left corners of the rectos with Arabic positional numerals, except for the first folio, which contains no folio number. In addition, the pages are

[^25]numbered at the middle of the bottom margins with Arabic positional numerals, starting from f .1 v .

The text and the diagram letters are written in one hand in nastacl $\bar{\imath} q$ with black ink, with pointing often provided. However, there is a tendency for the pointing to become sparse toward the end of the text of the $\operatorname{Riz} \dot{\bar{a}}$ version. The diagrams are carefully drawn and there are no empty spaces left for diagrams. Individual propositions are not numbered with the Arabic abjad system and there is no other mechanism to indicate where one proposition ends and the next one begins. There are no scholia.

The works in the manuscript are as follows:

1. (Rizīā) Risālat Arshimı̄dis f̄̄ misāhat al-dā̀ira wa-nisbat muhīțihā ilā quṭihā wanisbat basītih \bar{a} il \bar{a} murabba‘ quṭih \bar{a} : ff. $1 \mathrm{v}-3 \mathrm{v}$. The title is written at the first line of the text and in the same way as it. The colophon carries neither a date nor the name of the copyist. There is no proposition numbering. Numbers in this text are written in various forms: as lexical numerals, Hindu-Arabic numerals, and sexagesimal numerals with the abjad system. In the sexagesimal system, zeroes in sexagesimal places are written in a variety of forms, some of which are reproduced as color images below.
2. Risālat Arshimīdis f $\bar{\imath}$ al-khiffa wa-l-thiql. ${ }^{79}$ ff. $4 \mathrm{v}-5 \mathrm{r}$. The title is written at the first line of the text and in the same way as it. The colophon carries neither a date nor the name of the copyist.
3. A fragment of an untitled treatise: ff. $5 \mathrm{v}-6 \mathrm{v}$. Since the treatise starts with "He said: Weight is the comparison of lightness and heaviness with each other using the balance" (qāla al-wazn huwa qiyās al-khiffa wa-l-thiql ba‘ḍihā ilā ba‘d $b i-l-m \bar{\imath} z \bar{a} n)$, the subject is mechanics. The abrupt ending of the text shows that this is a fragment. There is no colophon.

Figure 1: 2,49,0,0. Taken from R 2v.

[^26]

Figure 2: Two examples of $16,0,0$. Taken from $\mathbf{R} 2 v$ and 3 r, respectively.

III Editorial Principles

III. 1 Text

Since the manuscripts used for establishing the Arabic texts are inconsistent in their use of diacritical pointing, I have corrected missing or erroneous diacritical pointing in the manuscripts silently whenever the readings of the words involved are clear from the context (both mathematical and grammatical), which is most often the case.

The lack of diacritical pointing frequently leaves one in doubt about the person, number, and gender of imperfect verbs. As to gender, I have harmonized the gender of third person singular imperfect verbs with the gender of their subject. For imperfect verbs that take an object, which are typically used for geometrical constructions, my choice has been to put the verb in the first person plural since perfect verbs with objects tend to be in the first person plural in the texts, and there is no reason to suppose that imperfect verbs would follow a different pattern. ${ }^{80}$

In general, in cases where a word cannot be read unambiguously, the context does not remove the ambiguity, and the principles stated above do not apply, the correct reading must either be determined from other manuscripts or be conjectured. I have indicated conjectures concerning diacritical pointing ("read."), vocalization ("voc."), or the consonantal skeleton ("corr.") in the critical apparatus. In these cases, I have recorded what I see in the manuscripts exactly (that is, with no implicit correction of diacritics, as opposed to the greater number of entries in the critical apparatus), ${ }^{81}$ together with a superscript asterisk with the siglum of the manuscript (for example, \mathbf{F}^{*}).

[^27]In cases where the text cannot be read in the manuscript due to physical damage, ${ }^{82}$ or illegible consonantal skeleton, this is indicated in the critical apparatus ("illeg."). ${ }^{83}$ If an illegible word or words in one manuscript can be read in other manuscripts, no editorial intervention is necessary; these are simply noted in the critical apparatus. Otherwise, the text must be restored; this is noted in the text by curly brackets.

In preparing the editions and translations of the Fatih and Columbia versions, I have used Knorr's (1989) work extensively. In many cases, when it is clear that the readings of the Arabic manuscripts are faulty, he translated the text using what he thought must be the correct reading, and he explained some of these in his footnotes. ${ }^{84}$ I have sometimes followed him when emending the Arabic text, and I have pointed this out in the critical apparatus with his name in parentheses. ${ }^{85}$ I have also discussed some of the major points of agreement or disagreement with him in footnotes to the translations, noting the footnote number in the critical apparatus.

I have not reported a number of minor faults in the manuscripts such as variations in spelling (when the intended word is clear), minor damages to the manuscript where the word is still legible, and overflows of a line into the left margin. I have similarly not reported words at the bottom of pages that replicate the first word on the following page. I have also standardized the spelling of number words, where, for example, the omission of long vowel alif in the number words is especially common in the manuscripts.

I have reported the manuscript readings of sexagesimal numbers in the critical apparatus only in cases of significant errors involving the shapes of the letters. I have reproduced the various signs to denote empty sexagesimal places with the zero numeral (•) without reporting the signs in the critical apparatus.

Some entries in the critical apparatus are discussed in footnotes in the translation; these entries contain the relevant footnote numbers.

Folio numbers have been indicated in the margins to the Arabic text. Of the pious invocations, only the basmala has been included in the Arabic texts.

I have divided the Fatih version into three propositions, following the extant Greek text of $M C .{ }^{86}$ I have similarly divided the $\operatorname{Ri} \dot{z} \bar{a}$ version into three propositions.

[^28]For the Columbia version, I have followed the letters used in the manuscript for the proposition numbering. ${ }^{87}$

Two more editorial interventions have been made for the sake of readability. First, I have split the text into paragraphs. In doing this, I have followed Heiberg's (Heiberg 1972, I.232-243) paragraph divisions as much as possible. ${ }^{88}$ Second, I have punctuated the texts. Most of the punctuation signs used correspond to coordinating conjunctions such as wa- and $f a$-. ${ }^{89}$

III. 2 Translation

I have tried to strike a balance between literalness and readability by translating the technical terms as literally and consistently as possible, but I have used idiomatic English in translating Arabic sentence structures. Whenever I added English words for the sake of producing a readable translation, I have enclosed these words in square brackets. As an extension of this practice, I have in many cases refrained from translating Arabic suffixed pronouns literally; instead, I have added the words to which these pronouns refer, when they were clear from the context, in square brackets. For example, the feminine pronominal suffix in muhititih \bar{a} might refer to a circle (d \vec{a} ira; feminine in Arabic), but translating that literally as ungendered "its" would have lost that reference and would have been confusing to the English reader. In that case, instead of "its perimeter," I translate "the perimeter of [the circle]."

I have translated Arabic numbers, regardless of how they are written in the manuscripts (with number words, Arabic abjad numerals, Arabic positional numerals, or mixed sexagesimal-decimal numerals), and fractions, with modern Western numerals. I have followed the convention of dividing sexagesimal places with commas and denoting the sexagesimal point with a semicolon in the translation. Diagram letters are translated according to the correspondence in Table 2.

[^29]Footnotes in the translation are for mathematical clarifications, ${ }^{90}$ explanations of difficult choices in the translation, explanations of textual difficulties, discussion of important agreements and disagreements with or criticism of Knorr (1989), and explanations that are pointed to in the critical apparatus. The footnotes to the proposition numbers give the folio and line ranges of the propositions in the manuscripts; these ranges do not include the lines for titles, pious invocations, or colophons.

Punctuation of the translations generally follows that of the Arabic texts; on occasion, I have used extra commas in the translations to produce a smoother reading. Paragraph divisions of the translations follows that of the Arabic texts as well.

III. 3 Diagrams

Diagram letters in Arabic scientific manuscripts are often inconsistently pointed just as the text is. However, in the case of the present texts, the diagram letters can, for the most part, be clearly read, in view of the following considerations: First, the Greek text provides clues as to what the diagram letters should be. Second, even where a diagram letter does not correspond to a Greek letter, it can often still be read if one considers the abjad order. ${ }^{91}$ Accordingly, it is possible to adopt a minimalist policy on the reporting of variations in diagram letters in the critical apparatus, in much the same way as for the text. Exceptions to this policy include, first, where the skeleton of the letters is in question, and second, where the stacking of letters (especially $\bar{\imath} \bar{\imath} m$ and $h\left(\bar{a}^{\jmath}\right)$ and the unclear placement of dots makes an unambiguous reading difficult. In such cases, mathematical sense and the use of the letters in the text have dictated the reading adopted in the Arabic text, and the manuscript readings have been recorded in the critical apparatus.

Diagram captions in the Arabic texts report differences between the established diagram and the manuscript diagrams, and differences between manuscript diagrams, where applicable. They also report uncertainties in reading letters, in both the manuscript diagrams and the text.

For the Fatih version, manuscript diagrams in \mathbf{F} provided the basis for the diagrams established in the text and translation. The diagrams in the texts have generally been put at the end of the relevant text blocks.

[^30]
III. 4 Scholia

Scholia to a version are found after the text and translation, with pointers to scholia provided in both the critical apparatus and the translation. Footnotes to the scholia numbers indicate the folio and location of the scholia. For the Columbia version, whose scholia have been translated by Knorr (1989), I have generally used the same points in the text and translation for the pointers of the scholia as his choices are correct.

III. 5 Transliteration of the Names of Geometrical Points

Table 2: Transliteration of Arabic Letters Denoting Geometrical Points

Arabic	English	Arabic	English
1	A	س	S
ب	B	ε	Q
>	G	-	F
2	D	ص	U
-	E	ق	C
j	Z	J	R
乙	H	ش	O
b	T	ت	P
ي	I	ث	Y
5	K	$\dot{\text { خ }}$	X
ل	L	ظ	Z
p	M	ض	D
ن	N		

The Arabic letters $\dot{,}, \dot{\varepsilon}$, and $و$ have been omitted from this table since they do not occur in the geometrical diagrams of the Arabic texts.

IV Texts and Translations

Abbreviations Used in the Critical Apparatus

corr. editorial correction to the consonantal skeleton
illeg. partly or completely illegible (with the reason in parentheses)
(dam.) physical damage to the manuscript
(skel.) illegible skeleton
(Knorr) changes suggested by Knorr's (1989) translations
mg. margin
om. omitted
read. editorial reading of a word by supplying pointing
sup. above the line
voc. editorial vocalization of a word by supplying vowel signs
$+\quad$ When a manuscript reading has to be broken apart (generally due to parts of it being written above the line), a plus sign is used. What comes after the plus sign is at the same spot on the manuscript as what comes before it.
$\rangle \quad$ editorial addition
$\{\quad$ editorial restoration
\dagger
Obeli indicate corrupt text that could not be emended. A single obelus is used before one corrupt word; two obeli enclose text where corruption is suspected.

Sigla

F İstanbul, Süleymaniye Manuscript Library, Fatih 3414, 1286 (AH 684) same hand, different ink

H
Bursa, İnebey Manuscript Library, Haraççıoğlu 1174, possibly 14 th century
$\mathbf{H}^{\mathbf{i}} \quad$ same hand, different ink
C New York, Columbia University Rare Book and Manuscript Library, Or. 45 , possibly the 13 th or 14 th centuries
second hand
third hand
R
Mashhad, Central Library of Āstān-i Quds-i Riżavī, 5634, date unknown

F* A superscript on a siglum indicates an exact manuscript reading (that is, with no implicit correction of diacritics). (Used only with "read.," "voc.," or "corr.")

IV. 1 The Fatih Version

F $2 \mathrm{v}, \mathrm{H} 1 \mathrm{v}$
بم اله الرهن الدهم
كَاب أرنميدس في مساحة الدائرة
 فلتكن دائرة ابج جد د قد ساوت مشلّث هَ في الأشياء التي ذكرناها آنغًا في الخبر. فأقول إنّ مساحتها مساوية لمساحته.
 ونعمل في الدائرة حبّع اجَ. فقد انفصل من دائرة ابَ جج د أعظم من نصفها، وهو مبّ اج ج. ونقطع قوس ابَ ونظائرها من القسي بنصفين نصفين على نقطة فِ
 دائرة اب ججد أعظم من نصفها، وهو افن بَ ونظائره. فإذا فعلنا ذلك على ما يتلو، فسوف تبقى قطع هي أصغر من مقدار زيادة الدائرة على مثلّث ه. فالشكل حينئذ المستقيم الخطوط الكثير الزوايا الذي تحيط به الدائرة هو أعظم من المثلّث. حكز الدائرة نَ، ونخرج عمود نس. نفطّ نس أقلّ من أحل ضلعي المثلّث المحيطين
بالزاوية القائمة، ومحيط الشكل الكثير الزوايا أقلّ من الضلع الباقي منهما، لأنه أيضًا أقلّ 15 من الخطّ الميط بالدائرة. فالذي يكون من ضرب أحل ضلعي المثلّث المحيطين بالزاوية

 فالمثلّث أعظم من الكثير الزوايا، وقد كان أصغر منه. هذا خلف لا يمكن.

 10 فَ ب"] وبت H ونظائرهما] ونظائرها FH

 من نصف شكل ق فـي

 التطع الأخرى. فإذا فعلنا ذلك فيما يتاو، فستبق قطح تفضل على الدائرة، وتكون إذا

 وعموده مساوٍ لنصف قطر دائرة اب جج، وقاعدته مساوية لميط دائرة ابج ج. فالذي

 نظائره] نظائره من نظائره H H H فلتق] فلتبق H H H H

يكون من ضرب نصف القطر في نصف الخطّ الميط بدائرة ابجج مساوٍ لتكسير مثلّث ه. وذلك ما أردنا أن نيّنّ. ومن أجل ذلك يكون ضرب نصف القطر في نصف قطعة من الميط هو تكس تمير الشكل الذي تحيط به تلك القطعة والخطّان الخرجان من طرفي القطعة إلى المركز.

Figure 3: Diagram for Fatih 1. F: $Y \bar{a}^{\prime}$ is written without dots in the diagram. There is a line of text at the bottom of the diagram but it cannot be read due to water damage. $\mathbf{H}: Y \bar{a}$, is written without dots in the diagram and in the text. R \vec{a}^{\prime} is written as $z \bar{a}^{\prime}$ in the diagram and the text. Kāf in the diagram is indistinct but looks like a $t \cdot \bar{a}$. $T \cdot \vec{a}$ is written as $z \underset{a}{ }$ in the diagram. Finally, $s \bar{\imath} n$ is misplaced in the diagram - at the intersection of the perpendicular to the side of the polygon and the line alif $b \bar{a}$-and it is sometimes written as shin in the text.

F نسبة تكسير كلّ دائزة إلى مّعّ قطرها كنسبة الأحد عشر إلى الأربعة 5 F 5

الأحد والعشرين إلى السبعة، ونسبة اججد إلى إلى
 منِّ جَ أربعة أضعاف ادج
 لتنطّ الميط بها، لأنّ الخطّ الميط بالدائرة أكثر من ثلاثة أضعاف قطرها بِّ الِّبع القطر
 إلى الأربعة عشر. وذلك ما أردنا أن نيّن.

Figure 4: Diagram for Fatih 2. H: In \mathbf{H}, the diagram above appears rotated by 180 degrees about the center of the circle. $D \bar{a} l$ is placed between the corner of the square and $h \bar{a}$; the corner of the square is then labeled $t \bar{a} \cdot \quad Z \vec{a}{ }^{\prime}$ resembles a $n \bar{u} n$ in the diagram and it is often written without a dot in the text.

 زاوية | قائة. فنسبة مزَ إلى زج ونسبة هج إلى ز جا أعظم من نسبة المائئين والثمسة والستّين إلى المائة والثلاثة والثمسين.
 فنسبة زه وه ج

H ماس

أعظم من نسبة الخسسمائة والأحد والسبعين إلى المائة والثالاثة والثمسين. فنسبة إلحّ القوّة إلى ح ج والأربعمائة والتسعة. فأمّا نسبته إليه في الطول فأعظم من نسبة الخمسمائة والألأحد
 فبمشل ما قلنا يتبيّن أنّ نسبة هج إلى ج ط إلمّ أعظم من نسبة الألف والمائة وائة والاثنين والستّين والثن إلى المائة والثلاثة والثمسين. فنسبة طه إلى طج جأعظم من نسبة الألف والمائة والاثنين والسبعين والربع إلى المائة والثلاثة والثمسين. وأيضًا فلنعسم زاوية طهمج بنصفين بخطّ هك. فنسبة 0ج إلى ج والثالاثين والربع إلى المائة والثلاثة والثمسين. فنسبة هك إلى ج ك أعظم من نسبة الألفين والثلاثمائة والتسعة والثلاثين والربع إلى المائة والثالاثة والثمسين. وأيضًا فلنتسم F 5 r \quad زاوية الأربعة آلاف والستّمائة والثالاثة والسبعين والنصف إلى المائة والثلاثة والثمسين. فلألنّ

 20 الزوايا ذي الستّ والتسعين زاوية أعظم من نسبة الأربعة آلاف والستّمائة والثالاثة الما والسبعين والنصف إلى الأربعة عشر ألفًا والستّمائة والثمانية والثانين. وذلك أكثر من

 H
 20 زاوية] الزاوية H آلاف] الألف H H 21 ألفًا ألف F، الألف H H

ثلاثة أضعافه بستّمائة وسبعة وستّين ونصف التي نسبتها إلى الأربعة آلاف والستّمائة والثالثة والسبعين والنصف أقلّ من السبع. فيجب أن يكون الشكل الكثير الزوايا
 الخطّ الميط بالدائرة من ثلاثة أضعاف قطرها وسبعه.

Figure 5: First diagram for Fatih 3. F: Dāl can be read with difficulty due to water damage; it can be identified from the text. There is something written above the line dāl mīm but it cannot be read due to water damage. H: In H, the diagram above has the line $d \bar{a} l z \bar{a} ’$ vertical and on the left side, with $z \bar{a} ’$ at the top and $d \bar{a} l$ at the bottom. $Z \vec{a} \overrightarrow{ }$ is written as a $r \vec{a}$ ' in the diagram. FH: $Z \vec{a}$ and $j \bar{l} m$ are often written as $r \vec{a} \overrightarrow{ }$ and $h \vec{a} \overrightarrow{ }$ in the text.

5 ولتكن دائزة على قطرها اجَ، وزاوية باج

 ضعف ج ب. ونقس زاوية باج لزاوية حجب، وزاوية باج قد قد قسمت بنصفين بخطّ آَ، يمب أن تكون زاوية ح ج ب لزوايا مثلّث ح
 1 أضعافه] أمثال H
 H \mathbf{H} ك

 والأحد عشر إلى السبعمائة والثمانين، وأنَّ نسبة اج إلى ج آلاف والثلاثة عشر والنصف والربع إلى السبعمائة والثمانين. فلنعسم زاوية جا

 الأجزاء من أحد عشر جزءًا من الواحد إلى المائين والأربعين. وأيضًا فإنّا نتسم زاوية طاج بنصفين بخطّ اك. والستّمائة والأحد والستّين والتسعة الأجزاء من الأحد عشر جزءًا من الواحـد إلى الما المائيني
 العددين الأوّلين إلى نظيره من العددين الأخيرين كنسبة الأربعين إلى الألحد عشر.

زاوية كا اج بنصفين بخطّ لا. فنسبة ال إلى ل لَج أقلّ من نسبة الألفين والستّة عشر 15 والسدس إلى الستّة والستّين. فنسبة اجَ إلى ج ل ألِّلِّل من نسبة الألفين والسبعة عشر

 والثالثين ثي أكثر من ثلاثة أضعاف الألفين والسبعة عشر والربع بأكثر أكثر من عشرة
 والتسعين زاوية الذي تحيط به الدائزة يزيد على ثلاثة أضعاف قطرها بأكثر من عشرة

$$
\text { الست] الستّة } 22 \text { زاوية] الزاوية H H }
$$

 أكثر من زيادة أضالع الشكل الكثير الزوايا.
 5 عشرة أجزاء من أحل وسبعين جزءًا. وذلك ما أردنا أن نييّن. [F] تَّ كّاب أرشميدس في مساحة الدائرة. الحمد لله وصلواته على خيرته من خلقه حمّد نبيّه وآله وصحبه وسلامه.

Figure 6: Second diagram for Fatih 3. F: $Z \bar{a}{ }^{\prime}$ is written as a $r \bar{a}{ }^{\prime}$ in the diagram and the text. H: $Z \vec{a}$ is unmarked in the diagram and written as a $r \vec{a}$ in the text.

1-1 من أحد] . الأضلاع H 4 وبأكثر] وأكثر HH

In the name of God, the Most Gracious, the Most Merciful

The Book of Archimedes on the Measure of the Circle

$1{ }^{92}$ Every circle is equal to the right-angled triangle one of whose sides surrounding the right angle is equal to half of the diameter of the circle and [whose] other side from the two [sides surrounding the right angle] is equal to the line surrounding the circle.

Let the circle $A B G D$ be [set] equal to the triangle E in the properties ${ }^{93}$ we mentioned earlier in the notification. ${ }^{94}$ Then I say that the measure of [the circle] is equal to the measure of [the triangle].

For if it is not so, the circle is either greater or smaller than [the triangle]. First, let it be greater than [the triangle]. We construct the square $A G$ in the circle. So [something] greater than its half, which is the square $A G$, has been removed from the circle $A B G D$. We cut the arc $A B$ and its counterpart arcs in halves at the point F and its counterpart points. We join $A F, F B$, and their counterparts. So, also, [something] greater than their halves, which is $A F B$ and its counterparts, has also been removed from the remainder of the segments of the circle $A B G D .{ }^{95}$ If we do that repeatedly, ${ }^{96}$ there will remain segments smaller than the amount of the excess of the circle over the triangle E. So, then, the rectilinear polygonal figure that the circle surrounds is greater than the triangle $[E]$. We make N the center of the circle, and we draw the perpendicular $N S$. So the line $N S$ is less than one of the two sides of the triangle surrounding the right angle, and the perimeter of the polygonal figure is less than the remaining side from the two [sides surrounding the right angle], since it is also less than the line surrounding the circle. So that which ensues from the product of one of the two sides of the triangle surrounding the right angle by the other [side surrounding the right angle], which is the double of the 〈area of the〉 triangle, is more than the result of the product of $N S$ and the perimeter of the polygon, which is the double of the area of the polygon. And their halves are also thus. ${ }^{97}$ So the triangle is greater than the polygon, even though it was smaller than [the polygon]. This is a contradiction that is not possible.

[^31]Now, let the circle be smaller than the triangle E if that were possible. We draw on [the circle] a square that surrounds it, which is the square $Q C$. So [something] greater than its half, which is the circle, has been removed from the square $Q C$. We divide the arc $B A$ in two halves at F, and its counterpart arcs in halves, and let there pass lines tangent to the circle through the points of the division. So the line $R T$ has been divided in two halves at the point F, the line $N C$ is perpendicular to $R T$, and similarly its ${ }^{98}$ counterpart lines. Since $C R$ and $C T$ are greater than $T R$, their halves are greater than its half. So the line $C T$ is greater than $T F$, which is equal to $T B$. So the triangle $C F T$ is greater than half of the triangle $C F B$, and all the more is it greater than half of the figure $C F I B$, which the lines $B C$ and $C F$ and the arc BIF surround. Similarly, the triangle $C F R$ is greater than FUAR. ${ }^{99}$ So the whole of $T C R$ is greater than half of the figure $\operatorname{AUFIBC},{ }^{100}$ and similarly its counterpart triangles are more than half of the counterparts of the other segments. If we do that repeatedly, ${ }^{101}$ there will remain segments that are left over from the circle, and when added together become less than the excess of the triangle E over the circle $A B G D$. Let there remain the segment $F R A$ and its counterpart segments. So, then, the rectilinear figure that surrounds the circle is smaller than the triangle E. This is not possible since it is greater than [the triangle], that is, $N A$ is equal to the perpendicular of the triangle, and the perimeter of the polygonal figure is greater than the other side of the triangle that surrounds the right angle, since it is greater than the line surrounding the circle. So that which ensues from the product of $A N$ and the perimeter of the polygon is greater than the product of one of the two sides of the triangle surrounding the right angle and the other. So the circle is not smaller than the triangle E. And it was proved in what preceded that it is not greater than [the triangle]. The circle $A B G D$ is therefore equal to the triangle E.

Also, the measure of the triangle E is equal to that which ensues from the product of its perpendicular and half of its base, its perpendicular is equal to half of the diameter of the circle $A B G,{ }^{102}$ and its base is equal to the perimeter of the circle

[^32]$A B G$. So that which ensues from the product of half of the diameter and half of the line surrounding the circle $A B G$ is equal to the area of the triangle E. And that is what we wanted to prove.

And because of that, the product of half of the diameter and half of a segment of the perimeter is the area of the figure that that segment and the two lines drawn from the two ends of the segment to the center surround. ${ }^{103}$

Figure 7: Diagram for Fatih 1.
2^{104} The ratio of the area of every circle to the square of its diameter is as the ratio of 11 to 14 .

Let the line $A B$ be the diameter of the circle, let us construct the square $G H$ on [the diameter], let $D G$ be half of the line $D E$, and let the line $E Z$ be a seventh of $G D$. Since the ratio of the triangle $A G E$ to the triangle $A G D$ is as the ratio of 21 to

[^33]7, and the ratio of $A G D$ to $A E Z$ is as the ratio of 7 to 1 , therefore the ratio of the triangle $A G Z$ to the triangle $A G D$ becomes as the ratio of 22 to 7 . But the square $G H$ is four times $A D G$, and the triangle $A G Z$ is equal to the circle $A B^{105}$ since the perpendicular $A G$ is equal to the line that is drawn ${ }^{106}$ from the center of this circle to the line surrounding [the circle], and the base $G Z$ is equal to the line surrounding [the circle], as the line surrounding the circle is greater than three times its diameter by approximately a seventh of the diameter. So it has become clear from what we have said that the ratio of the circle $A B$ to the square $G H$ is as the ratio of 11 to 14. And that is what we wanted to prove.

Figure 8: Diagram for Fatih 2.
$3{ }^{107}$ Every line surrounding a circle exceeds three times its diameter by [something] less than a seventh of the diameter and more than 10/71 of the diameter.

Let $A G$ be the diameter of a circle whose center is E, [let] the line $D Z$ [be] tangent to the circle, and [let] the angle $Z E G$ [be] a third of a right angle. So the ratio of $E Z$ to $Z G$ is as the ratio of 306 to 153 , and the ratio of $E G$ to $Z G$ is greater than the ratio of 265 to $153 .{ }^{108}$ We divide the angle $Z E G$ in two halves by the line $E H$. So the ratio of $Z E$ to $E G$ is as the ratio of $Z H$ to $H G .{ }^{109}$ So the ratio of $Z E$ and $E G$

[^34]together to $Z G$ is as the ratio of $E G$ to $G H .{ }^{110}$ So the ratio of $G E$ to $G H$ becomes greater than the ratio of 571 to 153 . So the ratio of $E H$ in power to $H G$ in power is as the ratio of ${ }^{111} 9450$ to $3409 .{ }^{112}$ As for its ratio to it in length, it is greater than the ratio of 5911^{113} to $153 .{ }^{114}$ And also, let us divide the angle $H E G$ in two halves by the line $E T$. So, similarly to what we said, it is proved that the ratio of $E G$ to $G T$ is greater than the ratio of $11621 / 8^{115}$ to 153 . So the ratio of $T E$ to $T G$ is greater than the ratio of $11721 / 4^{116}$ to 153 . And also, let us divide the angle $T E G$ in two halves by the line $E K$. So the ratio of $E G$ to $G K$ is greater than the ratio of 2334 1/4 to 153. So the ratio of $E K$ to $G K^{117}$ is greater than the ratio of $23391 / 4$ to 153. And also, let us divide the angle $K E G$ in two halves by the line $L E$. So the ratio of $E G$ to $G L$ in length is greater than the ratio of $46731 / 2$ to 153 . Since the angle $Z E G$ was a third of a right angle, the angle $L E G$ must be $1 / 48$ of a right angle. On the point E we construct an angle equal to the angle $L E G$, namely $G E M$. So the angle $L E M$ is $1 / 24$ of a right angle. So the straight line $L M$ is the side of the polygonal figure of 96 equal angles surrounding the circle. And since we had proved that the ratio of $E G$ to $G L$ is greater than the ratio of $46731 / 2$ to 153 , the line $A G$ is the double of $E G$, and the line $L M$ is the double of $G L$, it is necessary that the ratio of $A G$ to the perimeter of the polygonal figure of 96 angles be greater than the ratio of $46731 / 2$ to 14688 . And that is more than three times it by $6671 / 2$ whose ratio to $46731 / 2$ is less than a seventh. ${ }^{118}$ So the polygonal figure surrounding the circle must be more than three times the diameter of [the circle] by less than a seventh of

[^35]the diameter. All the more is the line surrounding the circle less than three times the diameter of [the circle] and a seventh of [the diameter].

Figure 9: First diagram for Fatih 3.

Let ${ }^{119}$ there be a circle on its diameter $A G$, and [let] the angle $B A G$ [be] a third of a right [angle]. So the ratio of $A B$ to $B G$ is less than the ratio of 1351 to 780 . As for the ratio of $A G$ to $G B$, it is equal to the ratio of 1560 to 780 , since $A G$ is the double of $G B .{ }^{120}$ We divide the angle $B A G$ in two halves by the line $A H$. So since the angle $B A H$ is equal to the angle $H G B$, and the angle $B A G$ has been divided in two halves by the line $A H$, the angle $H G B$ must be equal to the angle $H A G$. And the angle $A H G$ is common. So the angles of the triangle $A H G$ are equal to the angles of the triangle $H G Z .{ }^{121}$ So the ratio of $A H$ to $H G$ is as the ratio of $G H$ to $H Z$, as the ratio of $A G$ to $G Z$, and as the ratio of $G A$ and $A B$ together to $B G .{ }^{122}$ And the ratio of $G A$ and $A B$ together to $B G$ is as the ratio of $A H$ to $H G$. From that, it is proved that the ratio of $A H$ to $H G$ is less than the ratio of 2911 to $780,{ }^{123}$ and that the ratio of $A G$ to $G H$ is less than the ratio of $30131 / 21 / 4$ to $780 .{ }^{124}$ Let us divide the angle $G A H$ in two halves by the line $A T$. So it is proved from what we said that the ratio of $A T$ to $T G$ is less than the ratio of $59241 / 21 / 4$ to 780 , and that is as the ratio of 1823 to 240 , since the ratio of every one of the two former numbers to

[^36]

Figure 10: Second diagram for Fatih 3.
its counterpart among the two latter numbers is as the ratio of $31 / 4$ to 1 . So the ratio of $A G$ to $G T$ becomes less than the ratio of $18389 / 11$ to 240 . And also, we divide the angle $T A G$ in two halves by the line $A K$. So the ratio of $A K$ to $K G$ is less than the ratio of $36619 / 11$ to 240 . And that is as the ratio of 1007 to 66 , since the ratio of every one of the two former numbers to its counterpart among the two latter numbers is as the ratio of 40 to 11 . So the ratio of $A G$ to $K G$ is as the ratio of $10091 / 6$ to $66 .{ }^{125}$ And also, let us divide the angle $K A G$ in two halves by the line $L A$. So the ratio of $A L$ to $L G$ is less than the ratio of $20161 / 6$ to 66 . So the ratio of $A G$ to $G L$ is less than the ratio of $20171 / 4$ to 66 . If we invert (see Scholium 1), the ratio of the perimeter of the polygonal figure every one of whose sides is equal to the line $G L$ to the diameter becomes greater than the ratio of 6336 to $20171 / 4$. But 6336 is more than three times $20171 / 4$ by more than $10 / 71$ of $1 .{ }^{126}$ So the perimeter of the polygonal figure of 96 angles that the circle surrounds exceeds three times the diameter of [the circle] by more than $10 /\{7\} 1$. \{So the line surrounding\}

[^37]the circle $\{\text { becomes }\}^{127}$ more than three times the diameter of [the circle] by more than $10 / 71$, and the excess of [the circle] over this amount is more than the excess of the sides of the polygonal figure. ${ }^{128}$

So the line surrounding the circle exceeds three times the diameter of [the circle] by [something] less than a seventh of [the diameter] and more than 10/71. And that is what we wanted to prove.
[F] Archimedes's book on the measurement of the circle is complete. Praise be to God, his blessings and his peace upon the best of his creation, Muhammad his prophet, upon his family, and upon his companions.

IV.1. 1 The Fatih Version: Scholium

Scholium 1. ${ }^{129}$ I say: what is meant by [the word] qalb here is inversion, not the ratio of the antecedent to its excess over the consequent. ${ }^{130}$

[^38]
IV. 2 Columbia Preliminaries and the Columbia Version

C 24 r

C $24 \mathrm{v} \quad 5$

Figure 11: Diagram for Columbia Preliminary 1. C: $Z \bar{a}^{\prime}$ is written as a $r \bar{a}^{\prime}$ in the diagram and the text.

ب † †وإذا نقصنا من القوس التي على ضلع المربّع ما هو (على) ضلع المثمّن، فهو

 من نصف قوس دطمَ.

Figure 12: Diagram for Columbia Preliminary 2. C: $Z \vec{a}{ }^{\prime}$ is written as a $r \vec{a}$ ' in the diagram and the text.

〉ج اج وكلّ دائزة في مرّع متساوي الأضلاع فهي أكبر من نصف المربّع.

 الأربعة الداخلة نصف المربّع الأعظم، والأربعة في داخل الداليا الدائرة، فالدائرة أعظم من
؛ نصف المربّع الذي عليا.

Figure 13: Diagram for Columbia Preliminary 3. C: Yāa and $z \vec{a}$ are written without dots in the diagram and the text. $H \vec{a}$ ' is not marked in the diagram.

C 25 r סزَ من مرّع

 وتر ثلث القائة بالفرض. ويتبيّن من هذا الشكل أنّ بَ ج ج وتر الثلثين. فهو في القّوّة ثلاثة أمثال ابَ وتر الثلث من القائة، لأنّه إن عمل مرّع على اجَ القطر، فهو أربعة أمثال الذي على نصف القطر، أعني اد، أعني ابَ، وإذا نتص مرّع ابَ من مّعِّ
اجَ تبق منه ثلاثة أمثثال ريّع ابَّ. والهَ أعلمَ.

Figure 14: Diagram for Columbia Preliminary 4. C: All the letters have been written in darker ink but the same hand.

بِم اله الرهن الدهم

قول منسوب إلى أرشميدس في مساحة الدائرة

 زَ قائهة، ويكون هز مثّل نصف قطر الدائزة، وزَح مثل كيط تاك الد الدائزة. وبيّن أنّ

 بك ج ج جلد دم S

 مئلْث مزَح. فالكئير الزوايا الذي عليه اط ب

 الذي يكون من ضرب تَخ في كيط اطب بكلج دم الكئير الزوايا. وأنصاف

 C الدائرة C
 ما لا يمكن لأنهّ قد تيّن أنه أصغر منه. فليست دائرة ابَ ججد أعظم من مثلّث هزَح. وذلك ما أردنا أن نييّن.

Figure 15: Diagram for Columbia 1, corresponding to the first part of Fatih 1. C: All the diagram letters are written in darker ink, but in the same hand. In the diagram, $z \vec{a}^{\prime}$ is written like a $b \vec{a}^{\prime}$ without a dot; in the text it is written without a dot. $K h \vec{a}{ }^{\prime}$ is written without a dot in the diagram and the text. Finally, the line $t \vec{a}{ }^{\prime}$ $k h \vec{a}^{\prime}$ extends to the point shin in the diagram.

وإن أمكن فلتكن دائرة دب ك أصغر من مثلّث اب جَ. ونجّل على
 من نصفه، وهو دائرة دبك
 قد انفصل بنصفين على نتطة ت، وخطّ ج ت عهود على نَمَ وكذلك أيضًا الخطوط

. 10

$$
\text { 2 فليست] فليس C } 6 \text { خطًّا] خطّ C } 9 \text { نصفاهما] أنصافها C C }
$$

 من ضرب ابَ في بج
 دب S بأصغر من ممثّلث ابج

 من ضرب نصف التطر في نصف | ميط الدائرة مساوٍ لتكسير مئلّث ابِج
ومن أجل هذه العّة نضرب نصف القطر في نصف المحيط، فيكون من ذلك تكسير الدائرة المفروضة. وذلك ما أردنا أن نيّن.

 فليس (Knorr) [

Figure 16: Diagram for Columbia 2, corresponding to the second part of Fatih 1. C: In the diagram, $b \vec{a}$ (on the circle) and $y \vec{a}^{\prime}$ are written without dots. In the text, $b \vec{a}, t \vec{a}$, and $k h \bar{a}$ are sometimes written without dots.

نسبة الدائرة إلى المربّع الذي يكون من ضرب قطرها في نغسه كنسبة
ج
أحد عشر إلى أربعة عشر. .

 ثلاثة أمثال التطر ومثّل سبعه بالتقريب كما سنبيّن ذلك. فنسبة الدائرة إلى مرّع جّا 10

C 27 v

Figure 17: Diagram for Columbia 3, corresponding to Fatih 2. C: All the letters have been written in darker ink but in the same hand. $Z \vec{a}$ ' resembles a lām in the diagram; it is written as a $r \vec{a}$) in the text.

محيط كلّ دائرة ثلاثة أمثال قطرها، ويزيد أيضًا بأقلّ من سبع القطر وبأ كثر من عشرة أجزاء من واحد وسبعين منه.
 من القطر، ونخرج كه حتّى تكون الزاوية التي على خطّ ك ج
 أمثال خطّ ج ه. وكذلك تكون نسبة S ج إلى ج ه أعظم من نسبة مائين ونمسة وستّين إلى مائة وثلاثة وْمسين. ولكنّ ك ه مشلا ج أعظم من نسبة نمسمائة وأحد وسبعين إلى مائة وثلاثة ونمسين. ونخرج خطّ طك
 ك ج إلى ج
 ج ط ثالاثة وعشرين ألفًا وأربعمائة وتسعة، يكون به مربّ ك ج أكثر من ثلاثمائة ألف وستّة وعشرين ألفًا وأحد وأربعين، وكا | مربّي ك ج

 S see Scholium 5 [وأربعين C C C وست

ألف وتسعة وأربعين ألفًا وأربعمائة ونمسين. وكذلك وكن وكون طول كـ وط أعظم من
 فنسبة كا خطّي كط ك ج إلى جج ط أعظم من نسبة ألف ومائة واثنين وستّين وثُن
 خطّا كط ك 5 ج بنصفين. فتكون نسبة 5 ج إلى ج واثنين وستّين وثّن إلى مائة وثلاثة ونمسين.

Figure 18: Diagram for Columbia 4, corresponding to the first part of Fatih 3. C: $B \bar{a}$ ' and $y \bar{a}$ ' are written without dots in the diagram and the text. The line $j \bar{\imath} m k \bar{a} f$ is tilted. On the manuscript diagram, see also Scholium 8.

فبالمقدار الذي به يكون مّعّع جِي ثلاثة وعشرين ألفًا وأربعمائة وتسعة، يكون به
 وجزء من أربعة وستّين، وكا مربّي ك
 يكون خطّ ك5ي في الطول أعظم من ألف ومائة واثنين | وسبعين وثُن بالمقدار الذي
 من نسبة ألفين وثالثائة وأربعة وثلاثيّن وربع إلى مائة وثلاثة وثمسين. ونخرج أيضًا

 وأربعة] وأربع لـربوة C + عالت الربوة .
(Knorr)] (إلى ج ي أربعة] وأربع C

خطّ كل (الذي) يقطع الزاوية التي يكيط بها خطّا ك ي ك 5 ج بنصفين. فتكون نسبة
 وثمسين. فبالمقدار الذي به يكون مريّع ج ل ثلاثة وعشرين ألفًا وأربعمائة وتسعة،
 J

 محيط الشكل ذي ستّة وتسعين ضلعًا المعمول على الدائزة أعظم من ثلاثة أمنثال ونمال قطر
 قطرها، ويزيد بأقلّ من سبعه كثيرًا. وذلك ما أردنا أن نيّن.
0 ولتكن دائزة عليا ابج جَ، وقطرها اجَ، ولتكن زاوية با اج أيضًا ثلث قائمة. ونصل جَب. نفطّ اجَ مثلا خطّ جَبَ، ونسبته إليه كنسبة ألف ونمسمائة

 + C ${ }^{3}$ sup. جج

 أقلّ

وستّنْ إلى سبعمائة وثمانين. وكنك تك تكرن نسبة ابَ إلى بج
 من نسبة بنصفين. فتكون سنبة اه إلى 0ج كنسبة

 اج

 فنسبة طا إلى طج أهضر من نسبة
 , ${ }_{5}$

 طاج

1 1
 4

 (Knorr) [$\left\langle 1{ }^{21}{ }^{21}\right.$

 وسبعه، وأكثر من ثلاثة أمثال وعشرة أجزاء من واحد وسبعين منه. وذلك ما أردنا أن نيين.
تَّ القول المنسوب إلى أرشميدس فِيْ في مساحة الدائرة ونسبة القطر إلى الميط. والجمد لله همدًا كثيرًا وعلى ثمّد طالسلام\{،

Figure 19: Diagram for Columbia 5, corresponding to the second part of Fatih 3. $\mathbf{C}: B \bar{a}$ ' is often written without a dot in the diagram and the text. The diagram has a complete circle.

Propositions Useful for the Book of Archimedes, of $A b \bar{u}$ al-Rashīd 'Abd \{al-Hād̄̄1 \} ${ }^{131}$

$\langle\text { Preliminary 1 }\rangle^{132}$ Every equilateral quadrilateral ${ }^{133}$ in a circle is greater than the half of [the circle], since a quarter of the whole of the greatest quadrilateral ${ }^{134}$ - that is, the triangle $A E G$ - is smaller than a quarter of the circle ${ }^{\dagger}$ by an arc ${ }^{135}$ which, with $A Z G,{ }^{136}$ is its equal, ${ }^{137}$ the whole of the greatest quadrilateral is greater than half of the circle by the amount of four times ${ }^{138} A Z G .{ }^{\dagger}$

[^39]

Figure 20: Diagram for Columbia Preliminary 1.
$\left\langle\right.$ Preliminary〉 $2^{139}{ }^{\dagger}$ If we remove from the arc ${ }^{140}$ that is on the side of the square that which is $\langle o n\rangle$ the side of the octagon, ${ }^{141}{ }^{\mathrm{it}}{ }^{142}$ is greater than half of what remains from the circle after ${ }^{143}$ the square, ${ }^{\dagger 144}$ for if we construct on the side $D B$, then $D M T$ is greater than the arc $D T^{145}$ by the amount of the segment $D Z T,{ }^{146}$ since the triangle $D M T$ is half of $D Z T M$. So it is greater than half of arc $D T M .{ }^{147}$

[^40]

Figure 21: Diagram for Columbia Preliminary 2.
\langle Preliminary 3$\rangle{ }^{148}$ Every circle in an equilateral quadrilateral ${ }^{149}$ is greater than half of the quadrilateral. Let the circle be $I Z H T$, and [let] the quadrilateral [be] $A B G D$. So the quadrilateral $A B G D$ is divided by four triangles inside [the circle] [that are] equal to each other and equal to the four [triangles] that are partially outside the circle. ${ }^{150}$ The four interior triangles are half of the greatest quadrilateral, ${ }^{151}$ and the four ${ }^{152}$ are inside the circle, so the circle is greater than half of the quadrilateral that is [constructed] on it.

Figure 22: Diagram for Columbia Preliminary 3.

[^41]Let us also draw 〈a line〉 from E to B, which is $E L B$, and from L, the point of tangency [let us draw] a line on two sides of [the line $E L B$], ${ }^{153}$ which is the line $M L K$. Then I say \langle that $\rangle Z K$ is equal to $K L$. Its proof: Let us join $E K$. Since $E Z$ is equal to $E L$, the angles $E Z B$ and $E L K$ are right, and the line $E K$ is common, if we remove the square of $E Z$ from the square of $E K$, there remains the square of $K Z$. And $E L$ is equal to $E Z$, so $Z K$ is equal to $K L$, as we wanted. ${ }^{154}$
\langle Preliminary $\rangle 4^{155} A G$, the chord of the right angle from the triangle $A B G$, is twice the chord of the angle that is a third of a right angle. Its instantiation is this: $A D$ is equal to $A B$ and $D G$ is equal to $A B \cdot{ }^{156}$ So $A G$, the chord of the right angle, is twice $A B$, the chord of a third of a right [angle], by assumption. And it is clear from this diagram that $B G$ is the chord of two-thirds [of a right angle]. ${ }^{157}$ So it is, in power, three times $A B,{ }^{158}$ the chord of a third of a right angle, since if a square is constructed on $A G$, the diameter, then it is four times that which is on half of the diameter, namely $A D$, namely $A B$, and if the square of $A B$ is removed from the square of $A G$, then there remains from it three ${ }^{159}$ times the square of $A B$. God knows best.

[^42]

Figure 23: Diagram for Columbia Preliminary 4. Knorr (1989, 554) does not reproduce the circles H and E in their entirety.

In the name of God, the Most Gracious, the Most Merciful

Treatise Attributed to Archimedes on the Measure of the Circle

$\langle 1\rangle{ }^{160}$ Every circle is equal to a right-angled triangle one of whose sides surrounding the right angle is equal to the perimeter of the circle and [whose] other side is equal to half of the diameter of the circle.

Let there be a circle on which are $A B G D$, [let there be] a right-angled triangle on which are $E Z H$, [let] the angle which is at the point Z [be] right, $E Z$ is equal to half of the diameter of the circle, and $Z H$ is equal to the perimeter of that circle. It is clear that the circle $A B G D$ is equal to the triangle $E Z H$.

For if it is not so, [the circle] is the greater of the two or the smaller of the two. First, let the circle $A B G D$ be greater than the triangle $E Z H$. We make inside the circle a square on which are $A B G D$. So [something] greater than its half, which is the square $A B G D$, has been removed from the circle $A B G D .{ }^{161}$ We cut the arcs $A T B, B K G, G L D$, and $D M A$ in halves at the points T, K, L, and M. We join $A T$, $T B, B K, K G, G L, L D, D M$, and $M A$. So [something] greater than their half, which is $A T B, B K G, G L D$, and $D M A,{ }^{162}$ has also been removed from the remainder of the segments of the circle $A B G D .{ }^{163}$ And if we do that repeatedly, ${ }^{164}$ there will be cut off remainders smaller than the excess of the circle $A B G D$ over the triangle $E Z H$. So let there remain the segments $A N T, T U B, B Q K, K F G, G C L, L R D, D O M$, and $M Y A$ smaller than the excess of the circle $A B G D$ over the triangle $E Z H$. So the polygon on which are $A T B K G L D M$ is greater than the triangle $E Z H$. We make the center of the circle $A B G D$ the point P, and we draw from the center P a perpendicular to one of the sides of the polygon, on which are $P X$. Since the line $Z H$ is equal to the perimeter of the circle $A B G D$, which is greater than the perimeter of the polygon, on which are $A T B K L G D M$, the line $Z H$ is greater than the perimeter of $A T B K G L D M$ the polygon. Also, since the line $E Z$ is equal to half of the diameter of the circle $A B G D$, it is greater than the line $P X$. So that which ensues from the product of $E Z$ and $Z H$ is greater than that which ensues from the product of $P X$ and the perimeter of $A T B K L G D M$ the polygon. And their halves are also thus. ${ }^{165}$ So the triangle $E Z H$ is greater than $A T B K G L D M$ the polygon. And that is impossible

[^43]since [the triangle] was proved to be smaller than [the polygon]. Therefore the circle $A B G D$ is not greater than the triangle $E Z H$. And that is what we wanted to prove.

Figure 24: Diagram for Columbia 1, corresponding to the first part of Fatih 1.
$\langle 2\rangle{ }^{166}$ If possible let the circle $D B K$ be smaller than the triangle $A B G$. We make on the circle $D B K$ a square that surrounds it, on which are HTLE. So [something] greater than its half has been cut from the square $H T L E$, which is the circle $D B K .{ }^{167}$ We draw from the center G a line on which are $G P E$. We draw from the point P a line tangent to the circle on which are $N M$. And thus also $U Q, F C$, and $R S$. So the line $N M$ has been separated in two halves at the point P, the line $G P$ is perpendicular to $N M$, and thus also the remaining lines. We join $P D$. Since $E N$ and $E M$ are greater than $M N$, their halves are also thus, so the line $E M$ is greater than $M P$, which is equal to $D M .{ }^{168}$ So the triangle $E P M$ is greater than half of the triangle $E P D$, and all the more is it greater than half of the segment $P D E,{ }^{169}$ and thus $E P N$ is greater than half of the segment $B I P E$. So all of $M E N$ is greater than half of $B D E .{ }^{170}$ And thus is it that every one of $U H Q, F T C$, and $R L S$ cuts from〈every one of〉 $B H X, X T K$, and $K L D^{171}$ [something] greater than its half. And if we

[^44]do that repeatedly, ${ }^{172}{ }^{\dagger}$ there will be cut off from the square \langle that which is smaller than the supposed [thing]. ${ }^{\dagger 173}$ So let there remain the segments $D M P, P N B, B U Y$, $Y Q X, X F Z, Z C K, K R D$, and $D S D$ smaller than the deficit of the circle $D B K$ from the triangle $A B G$. So the polygon, on which are $M N U Q F C R S$, is smaller than the triangle $A B G$. And since the line $B G$ is equal to the perimeter of the circle $D B K$, but ${ }^{174}$ the perimeter of $M N U Q F C R S$ is greater than the perimeter of the circle $D B K$, the perimeter of $M N U Q F C R S$ the polygon is greater than the line $B G$. But $A B$ is equal to the line $P G$, so that which ensues from the product of the perimeter of $M N U Q F C R S$ and the line $P G$ is greater than the product of $A B$ and $B G$. And their halves are also thus. So $M N U Q F C R S$ the polygon is greater than the triangle $A B G$. And that is impossible since it was proved that it was smaller. So the circle $D B K$ is not smaller than the triangle $A B G$. But it was proved in what preceded that it was not greater. So the circle $D B K$ is equal to the triangle $A B G$. But the area of $A B G$ is equal to that which ensues from 〈the product of the line $A B$ and half of $B G$, and the line $B G$ is equal to the perimeter of the circle $D B K$. So that which ensues from the product of half of the diameter and half of the perimeter of the circle is equal to the area of the triangle $A B G$.

And for this reason we multiply half of the diameter by half of the perimeter, so there ensues from that the area of the assumed circle. And that is what we wanted to prove.

[^45]

Figure 25: Diagram for Columbia 2, corresponding to the second part of Fatih 1. Knorr (1989, 555-556, 561, n. 8) labels the $b \bar{a}$ ' in the square as " Z " and the $j \bar{\imath} m$ in the center as " k." The $y \bar{a}$ ' is not shown in his diagram, even though it appears in his text.
3^{175} The ratio of the circle to the square that ensues from the product of its diameter by itself is as the ratio of 11 to 14 .

Let there be a circle whose diameter is $A B$, and which 〈the square〉 $G H$ surrounds, we make the line $D E$ equal to twice the line $G D$, and we make $E Z$ equal to a seventh of $G D$. We join $A E, A D$, and $A Z$. Since the ratio of the triangle $A G E$ to the triangle $A G D$ is as the ratio of 21 to 7 , and the ratio of the triangle $A G D$ to the triangle $A E Z$ is as the ratio of 7 to 1 , the ratio of the triangle $A G Z$ to the triangle $A G D$ is as the ratio of 22 to 7 . But the square $G H$ is four times the triangle $A G D$, and the triangle $A G Z$ is equal to the circle $A B,{ }^{176}$ since the perpendicular $A G$ is equal to half of the diameter, and the base $G Z$ is equal to the perimeter of the circle, for the perimeter is three times the diameter and a seventh of [the diameter] approximately as we shall prove that. ${ }^{177}$ So the ratio of the circle to the square $G H$ is as the ratio of 11 to $14 .{ }^{178}$

[^46]Since 4 times 7 is 28 , the ratio of the triangle $A G Z$ - that is, the circle - to it ${ }^{179}$ is \langle as the ratio of $\rangle 22$ to 28 . And that is the ratio of 11 to 14 , as he proved. ${ }^{180}$ And that is what we wanted to prove.

Figure 26: Diagram for Columbia 3, corresponding to Fatih 2.
4^{181} The perimeter of every circle is three times its diameter, and also exceeds [it] by [something] less than a seventh of the diameter and more than 10/71 of [the diameter].

Let there be a circle on which are $B G K$, whose diameter is $G K$, and whose center is D. We draw $G E$ at right angles to the diameter, and we draw $K E$ so that the angle that is on the line $K G^{182}$ becomes a third of a right [angle]. So the ratio of $K E$ to $E G$ is as the ratio of 306 to 153 (see Scholium 1). So the line $K G$ is, in power, three times the line $G E$ (see Scholium 2). Similarly, the ratio of $K G$ to $G E$ is greater than the ratio of 265 to $153 .{ }^{183}$ But $K E$ is twice $G E$. So the ratio of $K G$ and $K E$ to $G E$ is greater than the ratio of 571 to 153 (see Scholium 3). We draw the line $T K$, 〈which〉 cuts the angle that the lines $K E$ and $K G$ surround in halves.

[^47]So the ratio of [the sum of] both lines $K E$ and $K G$ to $G E$ is as the ratio of $K G$ to $G T$ (see Scholium 4). ${ }^{184}$ Thus, the ratio of $K G$ to $G T$ is greater than the ratio of 571 to 153 . So by the amount \langle by \rangle which the square of $G T$ is 23409 , the square of $K G$ is more than 326041 (see Scholium 5), and [the sum of] the squares of both $K G$ and $G T$ are more than $349450 .{ }^{185}$ Thus, the length of $K T$ is greater than $5911 / 8$ by the amount by which the line $G T$ is 153 (see Scholium 6). So the ratio of [the sum of] both lines $K T$ and $K G$ to $G T$ is greater than the ratio of $11621 / 8$ to 153 (see Scholium 7).

Figure 27: Diagram for Columbia 4, corresponding to the first part of Fatih 3. Since the text states that $G K$ is the diameter, I have kept the manuscript diagram as it is. Knorr (1989, 545, 558, 562, n. 23) thinks that the manuscript diagram is mistaken in taking $G K$ for the diameter of the circle, and he produces a different ("corrected") version of the diagram where $G K$ is the radius. He then extends $G E$ in the other direction and measures $G M^{\prime}$ equal to $G M$. Then $M M^{\prime \prime}$ is the side of a regular 96 -gon circumscribed about the circle with the required side length and the proof works. The disadvantage of this correction is that, in the text, there is no indication of $G E$ being extended in the other direction (see Scholium 8).

And also, we draw the line $K I$, 〈which〉 cuts the angle that the lines $K T$ and $K G$ surround in halves. So the ratio of $K G$ to $G I$ is greater than the ratio of $11621 / 8$ to $153 .{ }^{186}$ So by the amount by which the square of $G I$ is 23409 , the square of $K G$ is greater than $1350534^{187} 1 / 21 / 64$, and [the sum of] the squares of both $K G$ and

[^48]$G I$ are greater than $13739431 / 21 / 64$ ．Thus，the line $K I$ is greater in length than $11721 / 8$ by the amount by which the line $G I$ is 153 ．So the ratio of［the sum of］ both $K I$ and $K G\langle$ to $G I\rangle$ is greater than the ratio of $23341 / 4$ to 153 ．And also， we draw the line $K L$ ，〈which〉 cuts the angle that the lines $K I$ and $K G$ surround in halves．So the ratio of $K G$ to $L G$ is greater than the ratio of $23\langle 3\rangle 4\langle 1 / 4\rangle$ to 153 ． So by the amount by which the square of $G L$ is 23409 ，the square of $G K$ is greater than 5448723 ，and［the sum of］the squares of both $G K$ and $L G$ are greater than 5472132 ．Thus，the line $K L$ is greater in length than $23391 / 4$ by the amount by which the line $G L\langle$ is $\rangle 153$ ．So the ratio of［the sum of］both lines $K G$ and $K L$ to $G L$ is greater than 〈the ratio of〉 $46731 / 2$ to 153 ．And also，we draw the line $K M$ ， ＜which〉 cuts the angle that the lines $K G$ and $K L$ surround in halves．But the ratio of $K G$ to $G M$ is greater than the ratio of $46731 / 2$ to 153 ．The line $K G$ is equal to the diameter of the circle，and the line $G M$ is the side of the polygonal figure of 96 sides that surrounds the circle．${ }^{188}$ So by the amount by which the side of the figure of 96 angles is 153 ，the whole of its perimeter is 14688 ，and the diameter ${ }^{189}$ of the circle is greater than $46731 / 2$ ．So it has become clear from that that the perimeter of the figure with 96 sides［that is］constructed on the circle is greater than three times the diameter of the circle，and exceeds［it］by［something］less than a seventh of［the diameter］．All the more is the perimeter of the circle greater than three times its diameter，and exceeds［it］by［something］less than a seventh of［the diameter］． And that is what we wanted to prove．
5^{190} Let there be a circle on which are $A B G$ ，whose diameter is $A G$ ，and let the angle $B A G$ also ${ }^{191}$ be a third of a right［angle］．We join $G B$ ．So the line $A G$ is twice the line $G B$ ，and its ratio to it is as the ratio of 1560 to $780 .{ }^{192}$ Similarly the ratio of $A B$ to $B G$ is smaller than the ratio of 1351 to 780 ．So the ratio of［the sum of］

[^49]both $A B$ and $A G$ to $B G$ is smaller than the ratio of 2911 to 780 ．We draw the line $A E$ ，〈which〉 cuts the angle $G A B$ in halves．So the ratio of $A E$ to $E G$ is as the ratio of 2911 to $780 .{ }^{193}$ So by the amount by which the square of $E G$ is 608400 ， the square of $A E$ is smaller than 8473921，and the whole of the squares of $A E$ and $E G$ is $9082321 .{ }^{194}$ Thus，$A G$ is smaller than $30133 / 4$ in length by the amount by which $G E$ is $780 .{ }^{195}$ So the ratio of［the sum of］both $A G$ and $E A$ to $E G$ is smaller than the ratio of $59243 / 4$ to 780 ，which is as the ratio of 1823 to 240 ，since each one of these two latter numbers is $4 / 13$ of the two numbers that are before them， each one to its counterpart．So the ratio of［the sum of］both $A E$ and $A G$ to $E G$ is smaller than the ratio of 1823 to 240 ．And also，we draw the line $A T$ ，〈 which〉 cuts the angle $E A G$ in halves．So the ratio of $A T$ to $T G$ is as the ratio of［the sum of］both $E A$ and $A G$ to $E G$ ．So the ratio of $T A$ to $T G$ is smaller than the ratio of 1823 to 240 ．So by the amount by which the square of $G T$ is 57600 ，the square of $A T$ is smaller than 3323329 ，and［the sum of］the squares of both $A T$ and $T G$ are smaller than 3380929．Thus，the line $A G$ is smaller than $18389 / 11$ in length by the amount by which $G T$ is 240 ，and the ratio of［the sum of］both $A T$ and $A G$ to $T G$ is smaller than the ratio of $36619 / 11$ to 240 ．But the ratio of $36619 / 11$ to 240 is the ratio of 1007 to 66 ，since each one of these two numbers is $11 / 40$ of the two numbers that are before them，each one to its counterpart．So the ratio of $A T$ and $A G$ to $T G$ is smaller than the ratio of 1007 to 66 ．And also，we draw the line $A K$ ，〈which〉 cuts the angle $T A G$ in halves．So let the ratio of $A K$ to $K G$ be as the ratio of 1007 to $66 .{ }^{196}$ So by the amount by which the square of $K G$ is 4356 ，the square of $A K$ is smaller than 1014049，and［the sum of］the squares of both $K A$ and $K G$ are less than 1018405．Thus，the line $A G$ is smaller than $10091 / 6$ in length，and ［the sum of］both of the lines $A G$ and $A K$ relative to ${ }^{197} K G$ are less than the ratio of $20161 / 6$ to 66 ．And also，we draw the line $A L$ ，〈which〉 cuts the angle $K A G$ in halves．So the ratio of $A L$ to $L G$ is smaller than the ratio of $20161 / 6$ to 66 ．So by the amount by which the square of $L G$ is 4356 ，by that amount the square of $A L$ is smaller than $40649281 / 36$ ．So［the sum of］the squares of both $L A$ and $L G$

[^50]are smaller than $40692841 / 36$ ．Thus，the length of the line $A G$ is less than 2017 $2 / 9^{198}$ by the amount by which the line $G L$ is $66 .{ }^{199}$ But the line $G L$ is the side of the polygon of ${ }^{200} 96$ angles that is in the circle．So by the amount by which $G L$ is 66 ，the whole of the perimeter of the polygon of 96 〈angles〉drawn inside the circle $A B G$ is 6336 ，and the diameter of the circle is smaller than this $20172 / 9 .{ }^{201}$ Thus， the perimeter 〈of the polygon〉 of 96 angles that is inside the circle is more than three times the diameter by $2841 / 3$ ，which is greater than $10 / 71 .{ }^{202}$ All the more is the perimeter of the circle more than three times the diameter and $10 / 71$ ．So it has become clear from that that the size ${ }^{203}$ of the perimeter of the circle relative to its diameter is less than three times and a seventh of［the diameter］，and more than three times and 10／71 of［the diameter］．And that is what we wanted to prove．

The treatise attributed to Archimedes on the measurement of the circle and the ratio of the diameter to the perimeter is complete．Much praise to God and on Muhammad \｛peace\}.

Figure 28：Diagram for Columbia 5，corresponding to the second part of Fatih 3.

[^51]
IV.2.1 The Columbia Version: Scholia

Scholium 1. ${ }^{204}$ Since the chord ${ }^{205}$ of a right angle is twice the chord of the angle that is a third of a right angle according to what has been explained in its place.

Scholium 2. ${ }^{206}$ Since the chord ${ }^{207}$ of two-thirds of a right angle, in power, is three times the chord of a third of a right angle according to what has been explained, as well.

Scholium 3. ${ }^{208}{ }^{\dagger}$ Since by assumption, so its ratio to 153 , whose double is $306 .{ }^{\dagger}$ And if that which we have explained that it is less than $K G$ is added to it, namely 265 , the total reaches 571 .

[^52]

Scholium 4. ${ }^{209}$ Since Euclid showed in Proposition 3 of Book VI that if, in a triangle, an angle is cut in halves, such as angle K in this diagram, then $K E, K G$, $E T$, and $T G$ are in continuous proportion. ${ }^{210}$

Scholium 5. ${ }^{211}{ }^{\dagger}$ Since $G T$ in this diagram is the counterpart of $G E$, which is 153 , and whose square is what has been mentioned, [namely] 23409, and $K G$ is the counterpart of the two sides that are 571, whose square is what has been mentioned, [namely] 326041. ${ }^{\dagger}$

Scholium 6. ${ }^{212}$ The length of $K T$, the chord ${ }^{213}$ of a right angle, is equal to the root of the two squares that are $T G^{214}$ and $K G$, whose squares are $349450,{ }^{215}$ whose root is 591 and that fraction that is 〉 more than $1 / 8$.

[^53]

Scholium 7. ${ }^{216}$ Since the length of $K T$ is more than $5911 / 8$ and the sum of the two is what has been mentioned, [namely] 1162.

Scholium 8. ${ }^{217}$ What is after this [point] from the diagram is the halvings of the angle, and the proof reverts to that which preceded, with increase of numbers.

[^54]
IV. 3 The Rizizā Version

R 1v
بِم الشَ الرهن الرّمي

رسالة أرشميدس في مساحة الدائزة ونسبة كحيطها إلى

قطرها ونسبة بسيطها إلى مّعّع قطرها

قال: كلّ دائرة فإنّ بسيطها كالمثّث القائم الزاوية الذي أحد ضلعيه

وليكن مثلّث قرّ بالشرط المذكور، فهو وما ذكر أولّاًا
 أوتارها. فئلّث برا أعظم من نصف قطعته، وكذا القول في باقي المثلثّات. ولا
 ولتّكن قطع آ رب ونظائرهما. فيبقى الشكل الكثير الزوايا الواقع في الدائرة أعظم من
 أنْ كيط الشكل أصغر من الضلع الآخن. ومساحة الشكل من ضرب هش شَ في نصف
 الشكل، وقد كان أصغر منه. هذا خلف. فالدائرة ليست بأعظم من المثلّث.

 كم. نفطّ كـ
 المثلثّات الباقية إنّا أعظم من القطع الداخلة على ميط الدائرة. ولا نزا إلى أن ييق من القطع الفاضلة على الدائرة أصغر من فضل المثلّث على الدائرة. فالمثلّث أعظم من الشكل الميط بالدائزة. ومعلوم أنْ حيطه أعظم من حيطها، ومساحته من

[^55]ضرب عمود هر في نصف أضالاعه الذي هو أعظم من الضلع الأعظم من المثلّث الذي
 الميط بالدائرة أعظم من المثلّث، وقد \} كان\{ أصغر منه. هذا خلف. المنا فسطح الدائرة كسطح المثلّث، وهو المطلوب.

Figure 29: Diagram for Rizīa 1, corresponding to Fatih 1. R: Shīn and yăa are written without dots in the diagram; shin is written with dots in the text. There are two more letters in the manuscript diagram, alif and $h \vec{a}$, at the top left and bottom right corners of the big square, respectively. Since they do not appear in the text, I have removed them.
وأمّا استخراج نسبة ميط الدائرة إلى قطرها، فهو مَا أصف.

R منـ

الجذر بشيء يسير لا يُدْرِكُ الحسّ. ونسبته إلى ججد أعظم من نسبة الجذر إلى سر ام ثٌّ نصصّف زاوية دبَج فبالتركيب نسبة دب ب ج بج (0V1

 .
 ج

 إلى ج بج ج ط بلغ كه ك ز ي لك جذره وهr نسبة هذا الجذر إلى
 فنسبة بج إلى ج دبج 20 ثلث قائمة، وزاوية يبج

 يط [

جزء من كد جزءًا من قائة. فهي جزء من 97 جزءًا من أربع قوائم عند المركز. .فغطّ يك ضلع من أضالع الشكل الكثير الزوايا ذي الستّ والتسعين ضلعًا الميط بالدائرة. وقد كانت نسبة | \}ب جج

 من نصف جزء، فُحيط الدائزة، الذي هو أصغر من ميط الشكل، أقلّ من ثلاثة أمثال قطرها ومن سبعه.

Figure 30: First diagram for Rizz $\bar{a} 2$, corresponding to the first diagram for Fatih 3. \mathbf{R} : The diagram includes two other lines, from $b \bar{a}$ ' to two other points, one between $j \bar{\imath} m$ and $y \bar{a}$, the other between $j \bar{\imath} m$ and $k \bar{a} f$. Since their endpoints are not labeled, and the text does not mention them, they seem to have been drawn by mistake; I have removed them. $Z \bar{a}$ ' and $y \vec{a}$ are written without dots in the diagram and text. Finally, $h \bar{a}$ cannot be seen (or is not labeled) in the diagram, but the text provides its identification.

[^56]وأقول أيضًا إنّ نسبة ميط الدائرة إلى قطرها أعظم من ثلاثة أمثال بأكثر من نسبة

 (7•^\&..
 فزاوية دج

 | جذره
 المذكورة إذا جعلنا خطّ ج₹ آ
 خطّ اجَ. ونسبة هذا الجذر إلى • ع كنسبة V • ا إلى يا، وكذا نسبة • \& ا إلى • \&
 R* | ${ }^{\text {R }}$ ~ corr. [${ }^{\text {P }}$

كنسبة 77 إلى يا، وذلك بالتقريب ِلِفْطِ النسبة. مّعّع العدد الأكثر د ما م م مط،

 اطاط. ونصل طجج. وعلى النسبة المذكورة إذا جعلنا خطّ ج ط 5

 77. وأيضًا فالأنّ زاوية طاج
 10

 15 L Y.IV

 نيّن.
 R* ${ }^{*}$ ك
 see note 260 6 \mathbf{R}^{*}

Figure 31: Second diagram for Riżā 2, corresponding to the second diagram for Fatih 3. R: $Z \vec{a}$ ' is written without a dot in the diagram and the text. The diagram has 'ayn in place of $h \vec{a}$ ' and $h(\vec{a}$ ' in place of $j \bar{\imath} m$; the text provides the identification of these two letters. Finally, no line is drawn between $t \bar{a} \overrightarrow{ }$ and $j \bar{\imath} m$ in the diagram.

 5 جاب، كرّبّع دب. ومسطّح هج في ج فسطّح ْبَ في بج الدائرة من ضرب نصف قطرها في نصف كحيطها. ونسبة خقطرها) إلى محيطها كنسبة السبعة إلى الاثنين والعشرين. فنصف ميطها أحد عشر جزءًا، وليكن بَزه فسطّح زبَ في بج كسطح الدائرة. ونسبة مسطّح هب في بَ ب٪ إليا كنسبة الأربعة عشر إلى الإحدى عشر.
R إليا | إليما R R السبعة] سبعة R

وأقول أيضًا: إن كانت مساحة الدائرة معلومة، فساحة مرّع قطرها معلومة . قيل إنّ نسبة الثلاثة التي بين الإحدى عشر والأربعة عشر إليه سبعه ونصف سبعا

 وكذا إن ضربنا مساحته في يا، وقسمنا على يد، تَخْجِ مساحة الدائرة معلومة، أو ننقص من مساحته سبعه ونصف سبعه. والله أعلم بالصواب. تّت .كمد الله وتوفيقه.

Figure 32: Diagram for Rizāa 3, corresponding to Fatih 2. R: As the text mentions lines that connect to two points, $h \bar{a}^{\prime}$ and $z \vec{a}^{\prime}$, that do not appear in the manuscript diagram, the manuscript diagram is corrupt. The line segment $h \vec{a}$ d $d \bar{a} l$ is my restoration based on the text.
 R* كرح 4

In the name of God, the Most Gracious, the Most Merciful

Treatise of Archimedes on the Measure of the Circle, on the Ratio of its Perimeter to its Diameter, and on the Ratio of its Surface to the Square of its Diameter

$\langle 1\rangle^{218}$ He said: The surface of every circle is as the right-angled triangle one of whose sides surrounding the right [angle] is as half of the diameter of [the circle] and whose other [side] is as the perimeter of [the circle].

Its instantiation: Let there be the circle $A B G D$ whose center is E and whose diameters, which are $A G$ and $B D$, intersect at right [angles]. And let there be a triangle ${ }^{219}$ satisfying ${ }^{220}$ the stated condition, so that it ${ }^{221}$ is as was mentioned before.
[The circle] is greater than [the triangle]: The square $A B G D$ is greater than half of [the circle]. We divide the quarters of [the circle] in halves, and we join the chords of [the circle]. So the triangle $B R A$ is greater than half of its segment, ${ }^{222}$ and similarly the argument [goes] for the remaining triangles. We continue doing thus until there remain from the circle segments smaller than the excess of the circle over the triangle. Let there be the segments $A R, R B$, and their counterparts. So the polygonal figure falling in the circle is greater than the triangle. We draw the perpendicular $E O$. So it is smaller than one of the two sides of the triangle surrounding the right [angle], and [it is] known that the perimeter of the figure is smaller than the other side. And the measure of the figure [is obtained] from the product of $E O$ and half of its sides, and the measure of the triangle [is obtained] from the product of one of its two sides and half of the other. So the triangle is greater than the figure, even though it was smaller than [the figure]. This is a contradiction. Therefore, the circle is not greater than the triangle.

Smaller: We have constructed on the circle a square that surrounds it. So [the circle] is greater than half of [the square]. We draw lines that are tangent to the circle at the middle of its quarters as in this picture. And let the diagonal ${ }^{223}$ of the greater square be $K M$. The line $K Q$ is greater than $Q R$, which is equal to the line $A Q$. So the triangle $K R Q$ is greater than the triangle $R Q A$. Therefore it ${ }^{224}$

[^57]is greater than the figure that $R Q, Q A$, and the arc $A R$ surround. And thus the argument [goes] for the remaining triangles, [namely] that they are greater than the interior segments on the perimeter of the circle. We continue doing thus until there remain from the segments left over from the circle [something] smaller than the surplus of the triangle over the circle. So the triangle is greater than the figure surrounding the circle. And [it is] known that the perimeter of [the figure] is greater than the perimeter of [the circle], and the measure of [the figure] [is obtained] from the product of the perpendicular $E R$ and half of its sides, ${ }^{225}$ which are greater than the greater side of the triangle, whose measure [is obtained] from the product of its smaller side, which is equal to the line $E R$, and half of its other side. So the figure surrounding the circle is greater than the triangle, even though it \{was\} smaller than [the triangle]. This is a contradiction. So the surface of the circle is as the surface of the triangle, which is the desired [result].

Figure 33: Diagram for Riżā 1, corresponding to Fatih 1.
$\langle 2\rangle$ As for the determination of the ratio of the perimeter of the circle to the diameter of [the circle], it is as I describe.

Let there be a circle whose diameter is $A G$, whose center is B, and [let] $D E$ [be] the side of a hexagon ${ }^{227}$ surrounding [the circle] and touching [the circle] at G. We

[^58]join $B D$ and $B E$. So the triangle $D B E$ is equilateral, the angle $D B G$ is a third of a right angle, the line $B D$ is twice $D G$, and its ratio to it is the ratio of 306 to 153 . The square of the first is 93636 , the square of the second is 23409 , their difference is 70227 whose root is $265,{ }^{228}$ which is the line $B G$ and [it is] greater than the root by an insignificant amount imperceptible to the senses. ${ }^{229}$ And its ratio to $G D$ is greater than the ratio of the root to $153 .{ }^{230}$ And also, we divide the angle $D B G$ in halves by the line $B Z$. So the ratio of $D B$ to $B G$ is as the ratio of $D Z$ to $Z G .{ }^{231}$ So by composition the ratio of $D B$ and $B G$ together to $G B$ is as the ratio of $D G$ to $G Z$. Its calculation is: the product of $B G$ and $G D$ is 40545 , 〈so if〉 we divide it by the sum of the numbers $D B$ and $B G$, which is 571 , the line $G Z$ results as 71 parts. ${ }^{232}$ So if we make it 153 , the line $B G$ becomes, by that amount, 571 , and its ratio to $G Z$ is greater than the ratio of this number to $153 .{ }^{233}$ Also, since the square of $B Z$ is as the squares of $B G$ and $G Z$, but the square of $B G$ is 326041 , and the square of $G Z$ is 23409 , their sum is 349450 whose root is $591 ; 8,34$, which is the line $B Z$. So its ratio to $G Z$ is greater than the ratio of this root to $153 .{ }^{234}$ And also, we divide the angle $Z B G$ in halves by the line $B H$. So based on the mentioned ratio, ${ }^{235} G H$ becomes known. So if we make it $153, B G$ becomes, by that amount, $1162 ; 8,34,{ }^{236}$ whose square is $6,15,9,35 ; 50^{237}$ and the sum of the squares of $G H$ and $B G$ is $6,21,39,44 ; 50$ whose root is $1172 ; 10,16$, which is the line $B H$. So the ratio of $B H$ to $G H$ is greater than the ratio of this root to $153 .{ }^{238}$ And also, we divide the angle $H B G$ in halves by the line $B T$. So based on the mentioned ratio, I mean the ratio of $H B$ and $B G$ together to $G B$ [which is] as the ratio of $H G$ to $G T, G T$ becomes known. So if

[^59]we make it $153, B G$ becomes, by that amount, known, which is $2334 ; 18,50$, whose square is $25,13,37,1 ; 20$ [which when] added to the square of $G T$ reaches $25,20,7,10 ; 20$ whose root is $2339 ; 19$. So the ratio of $B T$ to $G T$ is greater than the ratio of this root to 153 . And also, we divide the angle $T B G$ in halves by the line $B I$. So based on the mentioned ratio $G I$ becomes known. So if we make it $153, B G$ becomes, by that amount, $4673 ; 38 .{ }^{239}$ So the ratio of $B G$ to $G I$ is greater than the ratio of this number to $153 .{ }^{240}$ And also, since the angle $D B G$ was a third of a right [angle], and the angle $I B G$ is a fourth of a fourth of [the angle $D B G$], it is $1 / 16$ of [the angle $D B G]$, and $1 / 48$ of a right [angle]. And also, let the angle $K B G$ be as the angle GBI. So the angle $I B K$ is $1 / 24$ of a right [angle]. So it is $1 / 96$ of four right [angles] about the center. So the line $I K$ is 1 side from the sides of the polygonal figure of 96 sides surrounding the circle. ${ }^{241}$ And the ratio of $\{B G\}$ to $G I$ was greater than the ratio of $\{4673 ; 38\}$ to $153, A G$ is twice $G B$, and $I K$ is twice $\{G I\}$. So the ratio of $A G$ to the perimeter of the sides of the figure surrounding the circle is greater than the ratio of this number to the product of 153 and 96 , I mean the length ${ }^{242}$ of the sides of the figure, which is 14688 , and it is less than three times the mentioned number ${ }^{243}$ and from a seventh of it by more than half a part. So the perimeter of the circle, which is smaller than the perimeter of the figure, is less than three times the diameter of [the circle] and a seventh of [the diameter].

And I also say that the ratio of the perimeter of the circle to the diameter of [the circle] is greater than three times by more than the ratio ${ }^{244} 10: 71$. Let there be the circle $A B G$, whose diameter is $A G$, and [let] $G B$ [be] a side of the hexagon of [the circle]. ${ }^{245}$ We join $A B$. So the angle A is a third of a right [angle]. Let us posit, corresponding to the diameter $A G, 1560$ as a number, and corresponding to $G B 780$. Also, the square of the first number is 2433600 , and the square of $G B$ is 608400 , their

[^60]

Figure 34: First diagram for $\operatorname{Riz} \bar{z} \bar{a} 2$, corresponding to the first diagram for Fatih 3.
difference is 1825200 whose root is $1351,{ }^{246}$ which is the line $A B$. And its ratio to $B G$ is less than the ratio of the root \langle to $\rangle 780 .{ }^{247}$ And also, we divide the angle A in halves by the line $A D$. We join $G D$. So the angle $D G B$ is as the angle $G A D$, I mean the angle $D A B$. And the angle D is common. ${ }^{248}$ So the ratio of $A D$ to $D G$ is as the ratio of $G D$ to $D E$, as the ratio of $A G$ to $G E$, and as the ratio of $A B$ to $B E \cdot{ }^{249}$ By alternation, the ratio of $G A$ and $A B$ together to $B G$ is as the ratio of $A B$ to $B E,{ }^{250}$ I mean $A D$ to $D G$ because of the similarity of the triangles $A B E$ and $A D G .{ }^{251}$ So

[^61]the ratio of $A D$ to $D G$ is less than the ratio of $2911\langle$ to $\rangle 780$. So if we make $D G 780$, the line $A D$ becomes 2911 , whose square is $39,13,52,1$, the square of $D G$ is $2,49,0,0$, their sum is $42,2,52,1$ whose root is $3013 ; 41,20$, which is the line $A G$. So its ratio to $G D$ is smaller than the ratio of this root to $780 .{ }^{252}$ And also, we divide the angle $D A G$ in halves by the line $A Z$. We join $G Z$. Based on the mentioned ratio, the ratio of $G A$ and $A D$ together to $D G$ is as the ratio of $A Z$ to $Z G$. So if we make it 780 , the line $A Z$ becomes, by that amount, $5924 ; 41,20$. So the ratio of $A Z$ to $Z G$ is smaller than the ratio of this number to 780 . And the ratio of the greater [number] to the lesser [number] is the ratio of approximately 1823 to 240 since the ratio of every one of them to its counterpart is as the ratio of $31 / 4$ to $1 .{ }^{253}$ Also, the square of this greater number is $15,23,8,49$, the square of the lesser [number] is $16,0,0$, their sum is $15,39,8,49$ whose root is $1838 ; 43,49$, which is the line $A G$. So the ratio of $A G$ to $G Z$ is smaller than the ratio of this number to 240 . And also, we divide the angle $Z A G$ in halves by the line $A H$. We join $H G$. Based on the mentioned ratio, if we make the line $G H 240, A H$ becomes, by that amount, $3661 ; 43,49$. So the ratio of $A H$ to $H G$ is smaller than the ratio of this number to 240 . The square of the greater number is $1,2,4,31,8 ; 38$, the square of the lesser [number] is $16,0,0$, their sum is $1,2,20,31,8 ; 38$ whose root is $3669 ; 35,13$, which is the line $A G$. And the ratio of this root to 40 is as the ratio of 1007 to $11,{ }^{254}$ and similarly the ratio of 240 to 40 is as the ratio of 66 to 11 , and that is for the approximate preservation of the ratio. ${ }^{255}$ The square of the greater number is $4,41,40,49$, and the square of the lesser [number] is $1,12,36$, their sum is $4,42,53,25$ whose root is $1009 ; 9,36$, which is the line $A G$. So its ratio to $G H$ is smaller than the ratio of this number to $66 .{ }^{256}$ And also, we divide the angle $H A G$ in halves by the line $A T$. We join $T G$. Based on the mentioned ratio, if we make the line $G T 66$ parts, the line $A T$ becomes, by that amount, 2016;9,36. So the ratio of $A T$ to $T G$ is smaller than the ratio of this number to 66 . The square of the greater [number] is $18,49,8,21 ; 9$, the square of the lesser [number] is $1,12,36$, their sum is $18,50,20,57 ; 9$ whose root is $2017 ; 11$, which is the line $A G$. So its ratio to $G T$ is smaller than the ratio of this number to $66 .{ }^{257}$ Since the angle $T A G$ is $1 / 48$ of a

[^62]right［angle］，its double that is at the center is $1 / 24$ of a right［angle］，so it is $1 / 96$ of four right［angles］．So the line $G T$ is a side of the figure with 96 〈sides〉 that the circle surrounds．${ }^{258}$ And the length of its perimeter is 6336 as a number，that is，the result from the product of 66 and 96 ．So the ratio of the perimeter of the sides of the figure to the diameter $A G$ is greater than 〈the ratio of \rangle the length of the sides of［the figure］to $2017 ; 11$ ，the［value］posited corresponding to the diameter．But the length of the perimeter of the figure is greater than three times this number by something whose amount is $284 ; 27$ ．〈So if we multiply this number by 71,$20195 ; 57$ results〉，${ }^{259}$ and if we multiply the other number by 10,20172 results．Since this number is less than the other［number］，it is necessary that the ratio of the surplus to 2017 ； 11 be greater than the ratio of 10 to $71 .{ }^{260}$ And the perimeter of the circle is greater than the perimeter of the mentioned figure．${ }^{261}$ So the ratio of the perimeter of［the circle］ to the diameter of［the circle］is greater than three times the diameter of［the circle］ by［an amount］greater than the ratio of 10 to 71 ．And it was smaller than three times the diameter of［the circle］and a seventh of［the diameter］approximately．And that is what we wanted to prove．
$\langle 3\rangle{ }^{262}$ And I also say that the ratio of the square surrounding the circle to ［the circle］is as the ratio of 14 to 11 ．

Let the circle and the square be as in this picture，and let the line $B D$ be as the line $D E$ ．Since $D B$ is the double of $B G$ ，which is equal to the line $A G,{ }^{263}$ the product of $E G$ and $G B$ together with the square of $G D$－that is，the square of $G B$－is as the square of $D B \cdot{ }^{264}$ And the product of $E G$ and $G B$ together with the square of $G B$ is as the product of $E B$ and $B G$ ．So the product of $E B$ and $B G$ is as the square of $B D$ ，which surrounds the circle．Also，it［was proved］before ${ }^{265}$ that the measure of the circle is from the product of half of its diameter and half of its perimeter．${ }^{266}$ And the ratio of 〈its diameter〉 to its perimeter is as the ratio of 7 to 22 ．So half of its perimeter is 11 parts，and let it be $B Z$ ．So the product of $Z B$ and $B G$ is as the

[^63]

Figure 35: Second diagram for Rizāa 2, corresponding to the second diagram for Fatih 3.
surface of the circle. And the ratio of the product of $E B$ and $B G$ to the product of $Z B$ and $B G$ is as the ratio of $E B$, [which is] 14 , to $B Z$, [which is] 11 . So the ratio of the square surrounding the circle to [the circle] is as the ratio of 14 to 11 .

And I also say: ${ }^{267}$ if the measure of the circle is known, then the measure of the square of its diameter is known. It was said that the ratio of 3 , which is the difference of 14 and 11 , to it, ${ }^{268}$ is a seventh of it and a half of a seventh of it. ${ }^{269}$ So if the measure of the circle is known, we multiply [it] by 14,270 and we divide the result by 11 , the measure of the square of the diameter of [the circle] ensues as known. Or [if] we add to the measure of [the circle] a seventh of it and a half of a

[^64]seventh of it, ${ }^{271}$ the measure of its square ${ }^{272}$ results as known. ${ }^{273}$ And similarly if we multiply the measure of [the square] by 11 , and divide [it] by 14 , the measure of the circle ensues as known, or if we subtract from the measure of [the square] a seventh of it and a half of a seventh of it. God knows best what is right.

Finished by the praise of God and the success granted by him.

Figure 36: Diagram for Rizīa 3, corresponding to Fatih 2.

Acknowledgements

I thank the editors Nathan Sidoli and Taro Mimura. I am also grateful to the two anonymous referees for their comments to help improve the exposition.

References

Original Sources

Bursa, İnebey Manuscript Library, Haraççıŏlu 1174. Possibly the 14th century. İstanbul, Süleymaniye Manuscript Library, Fatih 3414. 1286 (AH 684). Mashhad, Central Library of Āstān-i Quds-i Riżavī, 5634. Date unknown. New York, Columbia University Rare Book and Manuscript Library, Or. 45. Possibly 13th or 14th century.

[^65]
Modern Scholarship

Acerbi, F., Vinel, N., Vitrac, B., 2010. "Les Prolégomènes à l'Almageste," SCIA MVS 11, 53-210.
Acerbi, F., Vitrac, B., 2014. Metrica, Héron d'Alexandrie: introduction, texte critique, traduction française et notes de commentaire, Pisa.
Adamson, P., Pormann, P.E., 2012. The Philosophical Works of al-Kind̄̄, Karachi.
Ahmad, A.T.S., 1987. F̄̄ al-ṣinā̄a al-‘uzmā, Cyprus.
Berggren, J.L., 2007. "Mathematics in Medieval Islam," in Katz, V., ed., The Mathematics of Egypt, Mesopotamia, China, India, and Islam, Princeton, 515-675.
Burnett, C., 2001. "The Coherence of the Arabic-Latin Translation Program in Toledo in the Twelfth Century," Science in Context 14, 249-288.
Cheikho, L., ed., 1912. Kitâb Tabaqât al-Umam ou Les catégories des nations, Beirut.
Clagett, M., 1959. The Science of Mechanics in the Middle Ages, Madison. (Reprinted: Madison, 1961.)
-_ 1964. Archimedes in the Middle Ages, v. 1, Madison.
Coşkun, E., 2018. "Thābit ibn Qurra's Translation of the Ma'khūdhāt Mansūba ilā Arshimūdis," SCIAMVS 19, 53-102.
Al-Dallāl, A., 1997. "Mulāḥazāt ḥawla taḥqīq ummahāt al-kutub al-makhṭ̄̄ṭa fî 'ilm al-falak al-‘arab $\overrightarrow{1} "$ (Remarks on Editing Original Manuscripts in Arabic Astronomy), in Shabbūh, I., ed., Tahqūq makhṭūtāt al-‘ulūm fı̄ al-turāth al-islām̄̄: abhāath al-mu’tamar al-rābic li-mu'assasat al-furqān (Editing Scientific Manuscripts in the Islamic Heritage: Proceedings of the Fourth Conference of the Furqan Foundation), Wimbledon, 77-101.
Decorps-Foulquier, M., 1998. "Eutocius d'Ascalon éditeur du traité des Coniques d'Apollonios de Pergé et l'exigence de clarté," in Argoud, G., Guillaumin, J.-Y., eds. Sciences exactes et sciences appliquées à Alexandrie, Saint-Étienne, 87-101. 2009. "Eutocius d'Ascalon et la Mesure du cercle d'Archimède," Les Études Classiques 77, 313-332.
Dijksterhuis, E.J., 1987. Archimedes, Princeton.
Flügel, G., ed., 1871-1872. Kitāb al-Fihrist, 2 vols., Leipzig.
Friedlein, G., 1873. Procli Diadochi in primum Euclidis Elementorum librum commentarii, Leipzig.
Gacek, A., 2001. The Arabic Manuscript Tradition: A Glossary of Technical Terms and Bibliography, Leiden.
Heath, T.L., 1897. The Works of Archimedes, Cambridge. (Reprinted: New York, 2010.)

- 1913. Aristarchus of Samos: The Ancient Copernicus, Oxford. (Reprinted: Cambridge, 2013.)
Heiberg, J.L., 1880-1881. Archimedis opera omnia cum commentariis Eutocii, 3 vols., Leipzig.
- 1898. Claudii Ptolemaei opera quae exstant omnia, v. 1, part 1, Leipzig.

Heiberg, J.L., with Stamatis, E.S., 1972. Archimedis opera omnia, 2 vols., Stuttgart. Hiller, E., 1878. Theonis Smyrnaei philosophi platonici expositio rerum mathematicarum ad legendum Platonem utilium, Leipzig.
Høyrup, J., 1986. "Al-Khwârizmî, Ibn Turk, and the Liber Mensurationum: On the Origins of Islamic Algebra," Erdem 2, 445-484.
Hultsch, F., 1876-1878. Pappi Alexandrini collectionis quae supersunt, 3 vols., Berlin. Knorr, W.R., 1978. "Archimedes and the Elements: Proposal for a Revised Chronological Ordering of the Archimedean Corpus," Archive for History of Exact Sciences 19, 211-290.
-_ 1986. The Ancient Tradition of Geometric Problems, New York.
-_ 1989. Textual Studies in Ancient and Medieval Geometry, Boston.
Krause, M., 1936. "Stambuler Handschriften Islamischer Mathematiker," Quellen und Studien zur Geschichte der Mathematik, Astronomie und Physik/Abt. B 3(4), 437-532.
Lévy, T., 2011. "La mesure du cercle d'Archimède au moyen âge : Le témoignage des textes hébreux," in Fontaine, R., Glasner, R., Leicht, R., Veltri, G., eds., Studies in the History of Culture and Science. A Tribute to Gad Freudenthal, Leiden, 103-137.
Lippert, J., ed., 1903. Ibn al-Qiftı's Ta'rīh al-Ḥukamā̀, Leipzig.
Lorch, R., 1989. "The Arabic Transmission of Archimedes' Sphere and Cylinder and Eutocius' Commentary," Zeitschrift für Geschichte der arabisch-islamischen Wissenschaften 5, 94-114.
Netz, R., 1998. "Deuteronomic Texts: Late Antiquity and the History of Mathematics," Revue d'histoire des mathématiques 4, 261-288.
——2004-2017. The Works of Archimedes, 2 vols., Cambridge.
__ 2012. "The texture of Archimedes's writings: through Heiberg's veil," in Chemla, K., ed., The History of Mathematical Proof in Ancient Traditions, Cambridge, 163-205.
Netz, R., Noel, W., Tchernetska, N., Wilson, N., 2011. The Archimedes Palimpsest, 2 vols., New York.
Rashed, R., 1993. "Al-Kindī's Commentary on Archimedes' 'The Measurement of the Circle'," Arabic Sciences and Philosophy 3, 7-53.
1996. Les mathématiques infinitésimales du IXe au XIe siècle. Fondateurs et commentateurs, v. 1, London.
-_ 2009a. Al-Khwārizm̄̄. The Beginnings of Algebra, Beirut.
—_ 2009b. "Thābit ibn Qurra et l'art de la mesure," in Rashed, R., ed., Thābit ibn Qurra. Science and Philosophy in Ninth-Century Baghdad, Berlin, 173-209.
__ 2017. Lexique historique de la langue scientifique arabe, Hildesheim.
Rashed, R., Papadopoulos, A., 2017. Menelaus' "Spherics": Early Translation and al-Māhān̄̄/al-Harawī's Version, Berlin.

Ritter, H., 1950. "Philologika: XIII: Arabische Handschriften in Anatolien und İstanbul (Fortsetzung)," Oriens 3, 31-107.
Rome, A., 1931-1943. Commentaires de Pappus et de Théon d’Alexandrie sur l'Almageste, 3 vols., Rome.
Rosenthal, F., 1956. "Al-Kindī and Ptolemy," in Studi orientalistici in onore di Giorgio Levi Della Vida, v. 2, Rome, 436-456.
Sayll, A., 1985. Logical Necessities in Mixed Equations by 'Abd al Ḥamı̂d ibn Turk and the Algebra of his Time, Ankara.
Sezgin, F., 1974. Geschichte des arabischen Schrifttums, Band 5, Leiden.
Sidoli, N., Isahaya, Y., 2018. Thābit ibn Qurra's Restoration of Euclid's Data, Cham.
Suter, H., 1900. Die Mathematiker und Astronomen der Araber und ihre Werke, Leipzig.
Thomann, J., 2018. "Scientific and Archaic Arabic Numerals: Origins, Usages, and Scribal Traditions of the Two Abjad Systems," SCIAMVS 19, 167-200.
Toomer, G.J., 1990. Apollonius: Conics Books V to VII. The Arabic Translation of the Lost Greek Original in the Version of the Banū Mūsā, v. 1, New York.
al-Ṭūsī, Naṣīr al-Dīn, 1939. Majmū‘at Rasā̉il Riyādiyya wa-Falakiyya, al-Qism 1, Hyderabad. (Reprinted: Sezgin, F., ed., Frankfurt am Main, 1998.)
Vitrac, B., 1997. "Théon d'Alexandrie et la Mesure du cercle d'Archimède," OriensOccidens 1, 48-81.
Wiedemann, E., 1906. "Beiträge zur Geschichte der Naturwissenschaften. VII. Über arabische Auszüge aus der Schrift des Archimedes über die schwimmenden Körper," Sitzungsberichte der physikalisch-medizinischen Sozietät in Erlangen 38, 152-162.
Zotenberg, H., 1879. "Traduction arabe du traité des corps flottants d'Archimède," Journal asiatique Série 7, 13, 509-515.
(Received: June 21, 2022)
(Revised: November 18, 2023)

[^0]: ${ }^{1}$ Dates are CE unless otherwise specified.

[^1]: ${ }^{2}$ See Sections I.3.1, I.3.2, and I.3.3, respectively, for brief descriptions of these versions and Section II for information on the manuscripts. The reader should be advised that Knorr (1989) denotes the Fatih and the Columbia versions and Naṣīr al-Dīn al-Ṭūsìs taḥrīr by AF, AR, and AT, respectively.
 3 The Arabic On the Sphere and the Cylinder has received even less attention than the Arabic MC. The only study dedicated to the Arabic On the Sphere and the Cylinder of whose existence I am aware is a brief survey of its transmission by Lorch (1989).
 ${ }^{4}$ I have not edited Naṣīr al-Dīn al-Ṭūsìs tahrī̄r for two reasons. First, the Arabic text has already appeared in a (noncritical) edition (al-Ṭūsı̄ 1939, 377-389), and an English translation has been published by Knorr (1989, 577-583). Second, no survey of the manuscripts of this taḥr $\bar{\imath} r$, of which there are dozens, has been undertaken; accordingly, any attempt at a critical edition would have been premature.
 ${ }^{5}$ For detailed studies of the works of Archimedes, see Dijksterhuis (1987) and Heath (1897); there is also a brief overview in Netz (2004-2017, I.10-13). An English translation of $M C$ can be found in Heath (1897, 91-98).
 6 The division of $M C$ into three propositions using proposition numbers is due to Johan Ludvig Heiberg (1972, I.232-243), the editor of the Greek text; as Netz $(2012,194)$ points out, the extant Greek manuscripts are not so divided. Heiberg's numbering can be defended by the observation that the three propositions have enunciations at their beginnings and there is none in the middle of the third proposition, where the second half of the proof begins. However, Heiberg (1972, I.240) records in the critical apparatus that manuscript A, the lost archetype for several other manuscripts, marks the middle of the third proposition as the beginning of the fourth proposition (δ^{\prime}). This is presumably because some of the manuscripts deriving from A have δ^{\prime} at this point; unfortunately Heiberg does not give more details.
 ${ }^{7}$ Henceforth, the convention of referring to propositions in mathematical texts by the name of the text in question (in italics) followed by the proposition number is adopted.

[^2]: ${ }^{8}$ In modern notation, $3 \frac{10}{71}<\pi<3 \frac{1}{7}$.
 ${ }^{9}$ Unless otherwise stated, "Theon" refers to Theon of Alexandria.
 ${ }^{10}$ One such example is the so-called "Sector Theorem" on the area of sectors of circles, cited by Hero (Acerbi and Vitrac 2014, 240.7-9). The statement of this theorem is given below in Section I.1.2; Pappus's proof is translated by Knorr (1989, 394-395).

 Using textual comparisons of MC 1 with Theon's Commentary on Ptolemy's Book I, Knorr (1989, 404-405) has argued that the extant Greek text of MC is descended from Theon's Commentary and is not a direct copy of Archimedes's own text; this view has come under criticism from Vitrac (1997, 20).
 ${ }^{11}$ As Dijksterhuis (1987, 130), among many others, has pointed out, the commonly used term "method of exhaustion" for this procedure is misleading, since nothing is exhausted. It is for this reason that I have adopted his phrase "indirect method."

[^3]: ${ }^{12}$ See Netz, Noel, Tchernetska, and Wilson (2011) for images and transcriptions of, and commentary on, the Archimedes Palimpsest.
 ${ }^{13}$ The expression is due to $\operatorname{Knorr}(1989,377)$.

[^4]: 14 These numbers are corrupt. See Acerbi and Vitrac (2014, 213, n. 255).
 15 See note 10.
 16 A comparison of Exposition (Hiller 1878, 126.8-127.6), and Theon's Commentary on Ptolemy's Book I (Rome 1931-1943, II.395.2-396.12), reveals that they are nearly identical. Based on this similarity, Knorr (1989, 493, n. 14) suggests that the passage of the Exposition is a later, Byzantine, interpolation and the original version is the one found in Theon's Commentary. Against this, Vitrac (1997, 62) proposes that such citations originate from a work combining the results of $M C$ and $O n$ the Sphere and the Cylinder to produce procedures to calculate surfaces with circular elements. Of the two suggestions, that of Vitrac seems to me the more convincing. Based on the similarity of the contexts where Theon of Smyrna and Theon cite these results of $M C$, I might only add that if, indeed, they draw from a common source as Vitrac suggests, it was probably an astronomical

[^5]: source containing an exposition on the size and shape of Earth (perhaps the treatise of Adrastes that Theon of Smyrna says he follows (Hiller 1878, 120.6-9)).
 17 According to Knorr (1989, 433, 525-526), this citation may be interpolated. Even if this is true, it does not affect the point made here about references to $M C$ being widespread in Greek mathematics after Archimedes.

 18 I have taken the date from $\operatorname{Knorr}(1989,168)$.
 19 See Hultsch (1876-1878, III.1156.25-1160.4) or Acerbi, Vinel, and Vitrac (2010, 129.9-130.23) for the whole argument.
 ${ }^{20}$ For a detailed study of Eutocius's commentary on $M C$ with a view to determining the properties of the Greek text of $M C$ that was used by him, see Knorr (1989, 513-534). In particular, according to Knorr (1989, 521), the extant version of Eutocius's commentary on $M C$ is due to Isidore of Miletus (6th century) "and copied out by some disciple of his." See Decorps-Foulquier (2009) for another study of Eutocius's commentary on $M C$ with a view to using it to elucidate the textual history of $M C$.
 ${ }^{21}$ I have taken Apollonius's date from Toomer (1990, xi).

[^6]: ${ }^{22}$ See also Netz (1998) for a list of textual practices of "deuteronomic texts," which include commentaries such as that of Eutocius.
 ${ }^{23}$ It is possible that Eutocius uses the word "famous" ($x \lambda \varepsilon \iota \nu \check{\omega} \nu$) in the quotation in the previous sentence sarcastically. The fallacy of Hippocrates presumably refers to taking the quadratures of lunes as implying the quadrature of the circle; that of Antiphon was to inscribe polygons in a given circle until the circle was exhausted. See Knorr (1986, 25-39) for a discussion.
 ${ }^{24}$ The translation is due to Knorr (1989, 494, n. 38).
 25 Archimedes proves in Spiral Lines 18 that "if a straight line should touch the spiral drawn in the first rotation at the end of the spiral, and a certain <line> is drawn from the point, which is <the> start of the spiral, at right <angles> to the start of the rotation ... the line between the tangent and the start of the spiral shall be equal to the circumference of the first circle" (Netz 2004-2017, II.114). This result gives the perimeter of a circle as equal to a straight line constructed using spirals. See Netz (2004-2017, II.114-124) for an English translation of Spiral Lines 18 and a discussion.

[^7]: ${ }^{26}$ I have followed Heiberg's dubium to translate $\wp \tau \tau о \cup \mu \varepsilon \nu o v ~ a s ~ " d o u b t e d " ~(H e i b e r g ~ 1880-1881, ~$ III.269).
 ${ }^{27}$ For a detailed explanation of the proof of the propositions in $M C$, see Dijksterhuis (1987, 222240).

[^8]: 28 See Heiberg (1880-1881, III.300.15-302.17) for the whole passage. An English translation of part of this passage can be found in Knorr (1989, 504-505).
 29 For a summary of the arguments of Aristotle as well as various calculations of the size of Earth, both those of Eratosthenes and others, see Heath (1913, 235-236, 337-350).
 30 See Flügel (1871-1872, I.265.20-23, 267.29-268.4) for Ibn al-Nadīm's reports on the translation of the Elements and the Almagest into Arabic.
 31 The full list given by Ibn al-Nadim is as follows: (i) The Sphere and the Cylinder (Kitāb al-kura wa-l-usțuwāna), two books; (ii) The Quadrature of the Circle (Kitāb tarb乞 al-d \bar{a} 'ira), one book; (iii) The Subdivision the Circle into Seven Equal Parts (Kitāb tasb $\imath \imath$ al-d \bar{a} ’ira), one book; (iv) Mutually Tangent Circles (Kitāb al-dawā̀ir al-mutamāssa), one book; (v) Triangles (Kitāb al-muthallathāt), one book; (vi) Parallel Lines (Kitāb al-khuṭūt al-mutawāziya); (vii) Lemmas on the Elements of Geometry (Kitāb al-ma'khūdhāt f̄̄ uṣūl al-handasa); (viii) Assumptions (Kitāb al-mafrụ̣̄āt), one book; (ix) Properties of Right-Angled Triangles (Kitāb khawāṣs al-muthallathāt al-qā ima al-zawāy \bar{a}),

[^9]: one book; (x) Construction of Water Clocks that Throw Little Balls (Kitāb ālat sā̄̄̄t al-mā allat $\bar{\imath}$ $\operatorname{tarm} \bar{\imath}$ bi-l-banādiq), one book. In the Arabic title of (iv), I have followed Sezgin $(1974,134)$ in correcting the title to al-mutamāssa from Flügel's al-mumāssa. This correction is suggested not only by the fact that mutually interacting objects are referred to with Form VI verbs in Arabic mathematical texts, but also by the reading in Ibn al-Qifț's list of the works of Archimedes.

 As to other biobibliographers, $S_{\text {āc }} \mathrm{c} i d$ al-Andalus̄̄ (1029-1070) in his Țabaqāt al-Umam begins his list of the works of Archimedes with (i) Heptagon in the Circle (Kitāb al-musabba‘ $f \bar{\imath} a l-d \bar{a}$ ira) and (ii) Measurement of the Circle (Kitāb misāhat al-d \bar{a} ira), which are presumably identical to (iii) and (ii) in Ibn al-Nadīm's list, respectively. Șā‘id al-Andalusı̀’s list also includes (iii) The Sphere and the Cylinder (Kitāb al-kura wa-l-ustuwāna al-makhrūṭa) at the end (Cheikho 1912, 29.2-3).

 Finally, Ibn al-Qifṭi’s (1172-1248) entry on Archimedes in his Ta'rīkh al-Hukam \vec{a} contains a list of the works of Archimedes which is a simple amalgamation of Ṣāid al-Andaluslıs list followed by Ibn al-Nadīm's list, except that Ibn al-Qifṭī skips (iii) in Ṣācid al-Andalusī’s list and (iii) in Ibn alNadīm's list, probably to avoid repetition (Lippert 1903, 67.10-15). We therefore get no additional information from Ibn al-Qifṭī on the works of Archimedes in Arabic.

 For lists of extant manuscripts containing the works of Archimedes in Arabic, see Sezgin (1974, 128-136). The reader should be warned that the correspondence between the works of Archimedes listed by the biobibliographers on one hand, and the titles given in the manuscripts listed by Sezgin on the other, is not perfect, due first to the inevitable variations of the titles in medieval manuscripts, and second, to the fact that some works attributed to Archimedes are extant in manuscripts but are not listed by the biobibliographers.
 32 Most of the known titles of works of al-Kindī come from Ibn al-Nadīm's list (Flügel 18711872, I.255-261). This has been supplemented from titles in other biobibliographical sources and translated into English by Adamson and Pormann (2012, l-lxii). For the entries given below, the Arabic titles are from Ibn al-Nadīm's (Flügel 1871-1872, I.256-257) list, and the numbers at the beginning of each entry, as well as the English translations of the titles, are from Adamson and

[^10]: Pormann's (2012, lii-liv) list, with minor changes to the translations. More important changes are noted where appropriate.
 ${ }^{33}$ Adamson and Pormann's (2012, lii) translation "On calculating the surface of a sphere" of this title is misleading.
 ${ }^{34}$ For this entry, which is an epistle of al-Kindī that I shall treat in more detail below, I have taken both the Arabic title and the English translation from Rashed (1993, 13-14) since the Arabic title as reported by Ibn al-Nadīm is corrupt.
 ${ }^{35}$ An $\bar{\imath} w \bar{a} n$ is a vaulted hall that is closed on three sides and open to the outside on the remaining side.
 ${ }^{36}$ The Great Art is not mentioned in the biobibliographical sources. The contents of this treatise, which is extant in a single manuscript, have been examined by Rosenthal (1956). Much of the treatise consists of either literal translations or paraphrases of Ptolemy's Almagest, interspersed with additional material, most of which derives from Theon's Commentary on Ptolemy's Book I (Rosenthal 1956, 439-440, 446). Ibn al-Nadīm reports a work of Theon titled Introduction to the Almagest (Al-mudkhal ilā al-Majisṭ̄) in an "old translation" (bi-naql qadīm) (Flügel 1871-1872, I.268.29); Rosenthal $(1956,446)$ suggests that this text may have been the one used by al-Kindī in composing the The Great Art.
 ${ }^{37}$ For an edition and an English translation of the epistle, see Rashed (1993).

[^11]: ${ }^{38}$ The correspondence between al-Kindī and Yūḥannā ibn Māsawayh was not limited to MC as al-Kindī is known to have written another epistle, on the soul, to Yūḥannā (Adamson and Pormann 2012, lxii).
 ${ }^{39}$ For an explanation of al-Kindī's peculiar term for the Elements, namely "Principal Books" (al-aqāw \bar{l} al- $\bar{u} l \bar{a})$, see Rashed (1993, 52-53).

[^12]: 40 This treatise is not listed in Ibn al-Nadīm's list of the works of the Banū Mūsā (Flügel 1871-1872, I.255-261). Both versions have been critically edited and translated, Gerard's Latin translation by Clagett (1964, 223-367) with an English translation and Naṣīr al-Dīn al-Ṭ̄̄̄ı̂̀s version by Rashed (1996, 1-137) with a French translation. The attribution of the Latin translation to Gerard of Cremona is made secure by the appearance of the title in a list of Gerard's translations written some time after his death by some of his associates (Burnett 2001, 277). It is important to note that the two versions differ to some extent, seemingly due to Naṣīr al-Dīn al-Ṭūsì’s editorial choices (Rashed 1996, 7-11).
 41 As Rashed (1996, 58, n. 1) points out, the introduction in Naṣīr al-Dīn al-Ṭūsìs version is truncated. Hence I refer to Gerard's version for the introduction.

[^13]: ${ }^{42}$ An edition and French translation of this treatise has been published by Rashed (2009b).
 ${ }^{43}$ See Section I.2.2.
 ${ }^{44}$ These are İstanbul, Süleymaniye Manuscript Library, Fatih 3414 and Bursa, İnebey Manuscript Library, Haraççıoğlu 1174. See Section II. 1 for more information on the manuscripts.

[^14]: ${ }^{45}$ This is the year of publication of Max Krause's Stambuler Handschriften islamischer Mathematiker (Krause 1936, 457), the earliest mention of Fatih 3414 known to me, though, to be sure, it only mentions the Kitāb al-ma'khūdhāt contained in Fatih 3414 and not the Fatih version of MC.
 ${ }^{46}$ Earlier, Knorr $(1989,422)$ claims that these corrupt numbers are not found in the Hebrew and Latin versions. This statement is misleading since the Hebrew version does not contain MC 3 at all while the Latin translation attributed to Plato of Tivoli also has 9450 and 3409.
 ${ }^{47}$ See Section I.3.5.

[^15]: 48 See note 188.
 49 Against Knorr (1989, 543, 552), who attributes both Columbia Preliminaries and Columbia to Abū al-Rashīd 'Abd al-Hādī.

 50 The mathematical terminology of the second paragraph of Columbia Preliminary 3, which I suspect is an interpolation (see note 154), has no noticeable difference with respect to the Fatih, Columbia, and Riżā versions.

[^16]: 51 These treatises are edited and translated by Rashed (2009a) and Sayılı (1985), respectively.
 52 For only four examples among many, see Sayılı (1985, 145.8, 17-18, 146.13-14, 149.17). The reader of Sayılı's edition should be warned that no line numbers are included in the Arabic text and I count the lines from the top, starting with the first Arabic line.
 ${ }^{53}$ For examples of saṭh used for both squares and rectangles, see Rashed (2009a, 117.1-3). For an example of saṭ̣ murabba‘ mutasāw̄ al-adla $\bar{a}^{`} w a-l-z a w \bar{a} y \bar{a}$, see Rashed (2009a, 119.7-8).
 ${ }^{54}$ Hence, Rashed's (2009a, 206) editorial addition of "portion limited by" to "the arc" to translate taksīr al-qaws is unwarranted.
 55 See Knorr (1989, 543-546) for a brief review of the differences between Columbia and Fatih.

[^17]: 56 The remarks on the use of numeration systems for the Arabic versions can only be tentative due to the small number of manuscripts for each version.

[^18]: 57 See note 267.
 ${ }^{58}$ Indeed, $\sqrt{70227}=265.00377$.

[^19]: ${ }^{59}$ The information presented in this paragraph summarizes Lévy (2011, 103, 104), including the footnotes.
 ${ }^{60}$ Vatican, Biblioteca Apostolica, MS Ebr. 384, ff. 412r-412v.
 ${ }^{61}$ Berlin, Staatsbibliothek, MS Heb. 204, ff. 156r-157r; Hamburg, Staats- und Universitätsbibliothek, MS Levy 113, ff. 104r-105r.

[^20]: ${ }^{62}$ Much of what is presented below summarizes Clagett's arguments.
 ${ }^{63}$ Paris, Bibliothèque Nationale, Lat. 11246, ff. 37v-39r; Paris, Bibliothèque Nationale, Lat. 7224, ff. 63r-65r; Dublin, Trinity College, D.2.9, ff. 54r-55r. The second and third manuscripts are copies of the first.

[^21]: ${ }^{64}$ On the same page, Clagett claims that the Arabic version of $M C$ exists only in the version of Naṣīr al-Dīn al-Ṭūsī, based on his examination of a number of manuscripts of the Arabic text. Since
 versions, it is not surprising that he should have come to this erroneous conclusion. In any case, since al-Ṭūsī himself was a practicing mathematical scholar, the numbers in his taḥrīr are correct. Perhaps it was this that led Clagett to ascribe the errors in the numbers in $\mathbf{L P}$ to a scribe rather than the translator.
 65 See Section I.3.1.
 ${ }^{66}$ For a recent edition of this text, see Burnett (2001). The item in question is the sixth, whose title is read by Burnett as Liber Archimedis tractatus .i.

[^22]: 67 See Section I.3.1.
 68 See the entry about him in Suter (1900, 158, no. 385).

[^23]: 69 See note 119.
 70 In his list of manuscripts of $M C$, Sezgin $(1974,131)$ reports that this manuscript dates from the 6 th century AH, referring to Ritter (1950, 102). Ritter (1950, 102-103) in turn reports that a manuscript named "Haraççzade, Heyet ve Hikmet 22 " and containing $M C$ dates from the 8th century AH. According to Ritter (1950, 103), this "Heyet ve Hikmet 22" contains 144 leaves, which suggests very strongly that it is none other than Haraççı̆̆̆lu 1174 , since this latter is also numerated up to the number 144 by Arabic positional numerals (see below). It might be conjectured that sometime between 1950 and 1974 large chunks of "Heyet ve Hikmet 22" were lost and then the remainder was simply called "Haraççıoğlu 1174 " and renumerated with Western numerals. However, I was unable to obtain positive confirmation of this in my communication with the İnebey Manuscript Library staff. Even though Ritter $(1950,103)$ does not make clear why he dates "Heyet ve Hikmet 22 " to the 8 th century AH, possibly he obtains this information from a colophon in the now lost parts of the full collection of 144 leaves. Therefore, I shall provisionally use the date of 8th century AH, or the 14th century, as the date of \mathbf{H}.
 71 The " 1 " in Western numerals is not written but is inferred from the " 2 " on the next recto.

[^24]: ${ }^{72}$ In the folio numbers in what follows, I use the Western numerals at the upper left corners. The reader should be aware that other authors, such as Sezgin (1974, 129), use the Arabic positional folio numbers.

 73 Written maqālatay in the manuscript.
 74 A detailed description and images of the manuscript are made available online, by the University of Pennsylvania Libraries, at https://openn.library.upenn.edu/Data/0032/html/ms_or_045.html (accessed on 24 July 2023). Since the folios themselves are unnumbered, I have used the folio numbers assigned to the images of the individual folios on that web page. The date of the manuscript is estimated to be in the 13th or 14th century based on the paper and writing; in any case, no author whose works are in this manuscript lived later than the early 13 th century.

[^25]: 75 The online description of the manuscript (see note 74 for the link), claims that the manuscript is "copied in the same hand." However, as Rashed and Papadopoulos (2017, 400) point out, the first treatise in the collection, a fragment of a translation of Menelaus's Spherics, is written in a different hand. In addition, the notes starting from f. 129r are written in different hands.
 76 They are the second and the fourth, marked with $b \bar{a}^{\prime}$ and $d \bar{a} l$. The reader should be aware that my numeration of the propositions of Ashk $\bar{a} l n \bar{a} i^{\prime} a ~ f \bar{\imath} k i t a ̄ b$ Arshimīdis differs from Knorr's (1989, 552-554). See notes 148 and 155.
 ${ }^{77}$ There is no numbering for Columbia 1. For Columbia 2, only the diagram is marked with a number.
 ${ }^{78}$ For more information on the ways in which numbers are written in Columbia, see Section I.3.2.

[^26]: ${ }^{79}$ For an uncritical edition of this text made from a Parisian manuscript, see Zotenberg (1879); this was translated into English by Clagett (1959, 52-55). Another translation, this time into German, was made from a manuscript in Gotha by Wiedemann (1906).

[^27]: 80 Another clue is given by the frequent occurrence of the imperfect forms of the verb waṣala, used for joining two points by a line segment, where the consonantal skeleton does not include a $w \bar{a} w$, thus ruling out the third person singular passive and leaving naṣilu as the only plausible reading.
 81 The reader should be aware that in addition to the usual diacritical pointing and harakāt, \mathbf{F} often uses a sign resembling a check mark, to distinguish $s \bar{\imath} n$ from $\operatorname{sh} \bar{\imath} n$ and $r \bar{a}$ from $z \bar{a}$. I have used the Unicode sign U+065A (","Arabic Vowel Sign Small V Above") to render this sign in the critical apparatus.

[^28]: ${ }^{82}$ This is especially common in Fatih 3414 (F). See Section II.1.
 ${ }^{83}$ In cases of illegibility, I have not indicated which characters in a word are illegible.
 ${ }^{84}$ However, the reader should be aware that he was not entirely consistent in pointing out when his translations supposed a reading different from that in the manuscripts.
 ${ }^{85}$ One exception to this rule is imperfect verbs, which he tended to read in the same way as I do. I have not pointed these out to avoid encumbering the critical apparatus.
 ${ }^{86}$ See Section I. 1 for the division of the Greek text into propositions.

[^29]: 87 This makes my numbering the same as Knorr's (1989, 552-561) with one minor difference. See note 155.
 88 See Netz (2012, 191-195) for a discussion of the differences between Heiberg's layout and the layout of the Byzantine manuscripts of the works of Archimedes.
 89 Al-Dallāl (1997, 90) argues for using punctuation in the edition of Arabic scientific texts, on the grounds that since medieval Arabic manuscripts do not have punctuation, and the modern languages into which they are translated do, the readings adopted by the editor may depend on how one places the punctuation marks. A good example of this is provided by the emendation of $w a-l l a d h \bar{\imath}$ to $f a-l l a d h \bar{\imath}$, and the placement of a period right before that emendation, toward the end of Fatih 1. It would certainly be possible to use a comma and keep the wa-lladh $\bar{\imath}$ but this would have made for an excessively long sentence and a less smooth reading.

[^30]: 90 In propositions where a sequence of steps is used more than once I have, for brevity, avoided repeating the mathematical explanations.
 91 Most letters in the manuscript diagrams are taken from the beginning of the abjad sequence, which makes the difference between the Western and Eastern variants much less significant.

[^31]: ${ }^{92}$ F 2v.3-3v.9. H 1v.2-2v.7. Greek text in Heiberg (1972, I.232.1-234.17).
 93 Literally "things" (ashy $\left.\bar{a}^{\prime}\right)$.
 94 "Notification" (khabar) is a common term for the enunciation. See Sidoli and Isahaya (2018, 212-213).

 95 The segments in question are the segment bounded by the $\operatorname{arc} A B$ and the line $A B$, and the counterparts of that segment. "AFB" refers to the triangle $A F B$.
 96 A nonliteral translation of the Arabic 'al $\bar{a} m \bar{a}$ yatl \bar{u}. Knorr $(1989,436)$ translates literally as "according to what follows."
 97 That is, they satisfy the same inequality.

[^32]: ${ }^{98}$ It is not completely clear what the Arabic nazā̀iruhu refers to. Presumably it refers to $R T$.
 99 Note that the two figures $C F I B$ and $F U A R$ are asymmetric with respect to the line $C N$. Consequently, the inequalities are also different: one triangle is greater than half of one figure; another triangle is greater than the other figure.
 100 The conjecture of Knorr (1989, 428, 440, 452, n. 24), based on the evidence of LG and HA, that there might be a gap here that contained something like "contained by lines $A Q, Q B$ [that is, $A C$ and $C B]$ and arc $A F B, "$ is supported neither by $\mathbf{L P}$ (as he himself notes), nor by the evidence of \mathbf{H}, nor by Columbia, nor by the tahrī̄r of al-Ṭūsi.
 101 A nonliteral translation of the Arabic fīmā yatlū. Knorr $(1989,437)$ translates literally as "in what follows."
 ${ }^{102}$ I have kept $A B G$ here and in the other two occurrences in this paragraph in accordance with the principle of lectio difficilior, even though \mathbf{H} and the Hebrew and Latin translations all use the

[^33]: four letters $A B G D$. That these other sources all have $A B G D$ can be explained by the presence of the phrase d \bar{a}^{\prime} irat alif $b \bar{a}^{\prime} j \bar{\imath} m d \bar{a} l$ numerous times in this proposition before this point. Knorr (1989, 438) erroneously has " $A B G D$ " for the first two mentions of the circle in this paragraph, but the manuscript image he $(1989,457)$ provides shows clearly that the letters in question are $A B G$ for both cases. The consistent use of $A B G$ to denote the circle in this paragraph instead of $A B G D$ strengthens the supposition that this paragraph is an interpolation, against Knorr (1989, 430-431). 103 The figure in question is a sector. This sentence is also likely to be an interpolation. ${ }^{104}$ F 4r.1-11. H 2v.8-20. Greek text in Heiberg (1972, I.234.18-236.6).

[^34]: ${ }^{105}$ This equality follows from $M C 1$ and $M C 3$. The implausibility of $M C 2$ preceding $M C 3$, which it requires, has been noted in the literature. See, for example, Knorr (1989, 477-478).
 ${ }^{106}$ I have vocalized this verb as yukhraju, a passive imperfect of the Form IV verb akhraja. Knorr $(1989,484)$ seems to have vocalized it as the Form I verb yakhruju since he translated the verb as "goes." Both vocalizations are equally plausible. The alternative reading nukhriju is less likely since
 verb, is of no help in determining the reading of the Arabic.
 ${ }^{107}$ F 4r.12-6v.4. H 2v.21-4r.22. Greek text in Heiberg (1972, I.236.7-242.21).
 108 If one takes $Z G=153$, then by Elements I.47, one has $E G^{2}=E Z^{2}-Z G^{2}=70227$, whose square root is slightly greater than 265 .
 ${ }^{109}$ By Elements VI.3.

[^35]: 110 Since $Z E: E G=Z H: H G$, by composition and alternation, $Z E+E G: Z G=E G: H G$.
 111 The word $l \bar{a}$ ("no"), written on top of the word $k a$-nisbat in red ink by the hand of Ibn Abī Jarāda $\left(\mathbf{F}^{\mathbf{i}}\right)$, shows that he realized that the numbers 9450 and 3409 were erroneous.
 ${ }^{112}$ The word $i l \bar{a}$ ("up to"), written on top of the word $a l-t i s^{\prime} a$ in red ink by the hand of Ibn Abī Jarāda $\left(\mathbf{F}^{\mathbf{i}}\right)$, indicates the bound of the stretch of text containing the erroneous numbers. In fact, if one takes $G H=153$ and hence $G H^{2}=23409$, then $G E>571$, hence $G E^{2}>326041$, and by Elements I.47, $E H^{2}=G E^{2}+G H^{2}>349450$. It is clear that these erroneous values are due to errors in transmission, as I argue in Section I.3.1, and for this reason I have kept them in the Arabic text, against Knorr $(1989,485)$, who produced the correct values in his translation.
 113 The absence of the expected $1 / 8$ (wa-l-thumn) here is possibly a corruption specific to $\mathbf{F H}$.
 114 Since $\sqrt{349450}>5911 / 8$.
 115 On top of the word wa-l-thumn, there is written something whose meaning I cannot discern, in red ink by the hand of Ibn Abī Jarāda $\left(\mathbf{F}^{\mathbf{i}}\right)$. What is written looks like an initial $m \bar{\imath} m$ on the right, followed by short vertical strokes in the middle, and the mirror image of the initial $m \bar{\imath} m$ on the left.
 116 Instead of the expected $1 / 8$ (wa-l-thumn), we have $1 / 4$ (wa-l-rubc) here; this must be, again, a corruption specific to $\mathbf{F H}$.
 117 Knorr (1989, 486) mistranslates as "GK to HK."
 118 That is, $14688=3 \cdot 46731 / 2+6671 / 2$ and $6671 / 2: 46731 / 2<1: 7$.

[^36]: 119 At this point, \mathbf{F} labels the text as the fourth proposition with $d \bar{a} l$ in red ink (5 v , right margin).
 ${ }^{120}$ If one takes $G B=780$ and hence $A G=1560$, then by Elements I.47, one has $A B^{2}=A G^{2}$ $G B^{2}=1825200$, whose square root is slightly less than 1351.
 ${ }^{121}$ Hence, the triangles $A H G$ and $G H Z$ are similar.
 ${ }^{122}$ Since the triangles $A H G$ and $G H Z$ are similar, one has $A H: H G=G H: H Z=A G: G Z$. From Elements VI.3, one has $A B: A G=Z B: Z G$. By composition and alternation, $A G+A B: B G=$ $A G: Z G$.
 ${ }^{123}$ If one takes $G B=780$, then $G A=1560$ and $A B<1351$.
 ${ }^{124}$ If one takes $G H=780$, then $A H<2911$, and by Elements I.47, $A G=\sqrt{A H^{2}+H G^{2}}<3013$ $1 / 21 / 4$.

[^37]: ${ }^{125}$ In fact, $A G: K G<10091 / 6: 66$.
 ${ }^{126}$ In other words, $6336>(310 / 71) \cdot(20171 / 4)$.

[^38]: 127 The upper parts of the words wa-sab'in $j u z^{\prime} a n ~ f a-y a s ̣ \bar{\imath} r$ are visible above the part of the paper damaged by water. As to al-khatt al-muhi \bar{t}, not only is the dot in the $k h \bar{a}^{\prime}$ visible, but the phrase is suggested by the text of the proposition itself, where it appears several times.
 128 Since the perimeter of the circle is greater than the perimeter of the inscribed 96-gon. The part of the sentence after the comma is quite possibly an interpolation since the perimeter of the polygon is described as "sides" ($a d l \bar{a}^{c}$), which is never seen anywhere else in Fatih.
 ${ }^{129} \mathbf{F}^{\mathbf{i}} 6 \mathrm{r}$, middle of left margin. The placement of this scholium is indicated in the manuscript by a signe de renvoi just before the word qalabn \bar{a}.

 130 In other words, al-qalb designates the inversion of a ratio ($\alpha \nu \alpha \dot{\alpha} \pi \alpha \lambda \iota \nu \lambda \dot{\partial} \gamma \circ \varsigma)$ and not the conversion of a ratio ($\dot{\alpha} \nu \alpha \sigma \tau \rho \circ \varphi \dot{\eta} \lambda o ́ \gamma o \cup)$, as it normally does (Rashed 2017, 557, 672).

[^39]: 131 Al-Hād̄ is Knorr's (1989, 543, 552) reading. Unfortunately, the word after ' $a b d$ in the manuscript is almost completely illegible since perhaps another scribe attempted to redraw part of it in darker ink; the only legible feature I can discern is a final $y \bar{a}$ that is not connected to the preceding letter. Al-Bāri' is, to my mind, equally plausible. In any case, Knorr's $(1989,543)$ suggestion that the author of the Columbia version is one Abū al-Rashīd Mubashshir ibn Aḥmad ibn 'Al̄̄̀ is almost certainly wrong. See Section I.3.2.
 ${ }^{132} \mathbf{C} 24 \mathrm{r} .17-24 \mathrm{v} .1$. The text of the proof of the proposition is unclear, but the main thrust of the argument is obvious enough; namely, the square $A G B D$ is greater than the semicircle by twice the area bounded by the arc $A G$ and the lines $A Z$ and $Z G$. Knorr $(1989,552)$ attempts to correct the deficiencies in the proof by reinterpreting some of the expressions, some of which are pointed out below. For my part, I suspect textual corruption in the indicated range.
 133 That is, a square (Knorr 1989, 552).
 134 Here and below, I translate murabbac as "quadrilateral."
 135 That is, the segment of the circle on the chord $A G$ (Knorr 1989, 552).
 136 This correction, which is suggested by $\operatorname{Knorr}(1989,552)$, is justified by the fact that the author of these propositions uses the letters $A Z G$ for the segment of the triangle $A Z G$ outside the circle at the very end of this proposition.
 137 That is, the equal of the triangle $A E G$. One way to interpret the passage aṣghar min rub al-d \bar{a} 'ira bi-qaws, wa-huwa ma'a alif $z \bar{a}^{\prime} j \bar{\imath} m$ diffuhu, suggested to me by Nathan Sidoli and which I have adopted in the translation, is to assume that wa-huwa refers to qaws (qaws having masculine gender being admittedly rare) and diff is used in the sense of "equal." Another solution would be to take $w a-h u w a$ to refer to $r u b^{c} a l-d \bar{a}^{\prime} i r a$ and $d i f u h u$ to mean the double of the triangle $A E G$. In that case, the text would be stating that the quarter circle, together with $A Z G$, would be equal to twice the triangle $A E G$. Both solutions are mathematically correct.
 138 The correct multiple should be two; Knorr $(1989,552)$ suggests a correction to "twice."

[^40]: 139 C $24 \mathrm{v} .1-24 \mathrm{v} .4$. Again, there is reason to suspect textual corruption in the indicated range on account of the unclear meaning.
 140 That is, the segment of the circle on the side $D B$ of the square (Knorr 1989, 552).
 141 That is, the two segments of the circle on the sides $D T$ and $T B$ of the octagon. Adding the word 'alā to the text clarifies the meaning considerably. Knorr (1989, 552), not having made that addition, thinks that what is meant here is "the triangle bounded by a side of the square and the corresponding two sides of the octagon," that is, the triangle $D T B$. But it makes for a smoother reading if we are removing the two smaller segments of the circle from the greater segment of the circle, and then stating a conclusion about the remainder, which is the triangle $D T B$.
 142 That is, the triangle $D T B$ (Knorr 1989, 552).
 143 That is, minus (Knorr 1989, 552).
 144 Again, the segment of the circle on the side $D B$ of the square is meant.
 145 That is, the segment of the circle on the side $D T$ of the octagon (Knorr 1989, 552).
 146 That is, the area bounded by the arc $D T$ and the lines $D Z$ and $Z T$.
 147 That is, the triangle $D M T$ is greater than half of the area bounded by the arc $D T$ and the lines $D M$ and $M T$. Extending this result by symmetry to the triangle $M T B$ yields the statement of the proposition, namely that the triangle $D T B$ is greater than half of the area bounded by the arc $D B$ and the line $D B$.

[^41]: ${ }^{148}$ C 24v.5-25r.1. Knorr (1989, 553, 561, n. 4) himself notes that his Propositions 3 and 4 use the same figure. I have joined his two propositions into one. See also note 155.
 149 That is, a square.
 150 The interior triangles are $Z E H$ and its counterparts, and the triangles partially outside the circle are $Z B H$ and its counterparts.
 151 That is, the square $A B G D$ (Knorr 1989, 553).
 152 That is, the four interior triangles.

[^42]: 153 Knorr (1989, 553) presumably reads حهرd of the manuscript as jihatihi since he translates this word as "its direction." The correction to jihatayhi is necessitated by the fact that KLM extends on both sides of $E L B$.
 154 Elements of this paragraph—the specification marked with $f a-a q \bar{u} l$, the proof with burh $\bar{a} n u h u$, ending with $\operatorname{kam} \bar{a}$ aradn \bar{a}-as well as the fact that it is unrelated to the statement of Columbia Preliminary 3 even though it uses the same diagram, indicate that it could be an interpolation.
 ${ }^{155}$ C 25r.1-25r.9. Knorr $(1989,554)$ labels this proposition as the fifth. However, there is a large $d \bar{a} l$ above the first line in f. 25 v that shows that it must be the fourth. Since the proof of this proposition seems confused and incomplete, again, there is probably a fair amount of corruption in the text.
 ${ }^{156}$ Knorr $(1989,554)$ thinks this could be $A D$ or $A B$. However, the manuscript clearly has a $b \bar{a}$.
 157 It appears that the scribe who copied the text broke the definite article across two lines (he did this on two other occasions in this proposition), and this was corrected later, by a hand using the same ink as the text. Yet another hand, possibly different this time since he used black ink, put two dots arranged vertically on top of each $t h \bar{a}$) of the word thulthayn.
 158 Knorr (1989, 554, 561, n. 6) reads the last letter $\boldsymbol{\sim}$ as a $h \vec{a} \bar{a}$, standing for haina’idhin, which he translates "at the same time." That makes for an awkward reading by introducing an extra word in the middle of the apposition. It seems simpler to assume that the last letter is a $j \bar{l} m$ without its dot.
 159 This is the correct value, as pointed out by Knorr (1989, 554).

[^43]: ${ }^{160}$ C 25r.11-26r.5. Columbia 1 corresponds to the first part of Fatih 1.
 ${ }^{161}$ By Columbia Preliminary 1.
 162 That is, the triangles with these vertices (Knorr 1989, 554).
 ${ }^{163}$ By Columbia Preliminary 2.
 164 A nonliteral translation of the Arabic 'alā mā yatlū. Knorr $(1989,555)$ translates literally as "over what follows."

 165 That is, they satisfy the same inequality.

[^44]: ${ }^{166}$ C 26r.6-27r.3. Columbia 2 corresponds to the second part of Fatih 1.
 167 By Columbia Preliminary 3.
 168 That $M P=D M$ follows from Columbia Preliminary 3.
 169 That is, the region bounded by the lines $P E, E D$, and the arc $P D$. Similar explanations apply to the other segments mentioned in the proof.
 170 The segment $B D E$ is the region bounded by the lines $B E, E D$, and the arc $B D$.
 171 Again, the respective segments are meant.

[^45]: 172 A nonliteral translation of the Arabic fīmā yatlū. Knorr $(1989,556)$ translates literally as "in what follows."
 173 The hiya after asghar (on the last line of f. 26r) probably stands for intih \bar{a} ' ("end") (Gacek 2001, 146, s.v. "intih $\vec{a}{ }^{-3}$ "). The reason why the text is supposed to end here is unclear and the text between the obeli is in all likelihood corrupt. But the next sentence may provide a clue as to how the extant words should be interpreted: alladh $\bar{\imath}$ ("that which") refers to the segments $D M P, P N B$, etc. and al-mawd \bar{u}^{c} ("the supposed [thing]") refers to the difference of the areas of the triangle $A B G$ and the circle $D B K$. Then, the polygon $M N U Q F C R S$ that is circumscribed about the circle is smaller in area than the triangle $A B G$, just like the text states. However, this interpretation is problematic in that the verb yataqātac u seems awkward to use for the aforementioned segments.

 174 The $k h \bar{a}$ ' probably stands for nuskha ("copy" or "variant reading") (Gacek 2001, 140, s.v. "nuskhah"), which may imply that the scribe corrected the word wa-lākinna from another manuscript.

[^46]: ${ }^{175} \mathbf{C} 27 \mathrm{r} .3-27 \mathrm{v} .2$. Columbia 3 corresponds to Fatih 2.
 176 Again, this equality follows from MC 1 (Columbia 1 and 2) and MC 3 (Columbia 4 and 5). See note 105.
 177 Knorr (1989, 557) probably reads سنبين of the manuscript as sa-yubayyanu since he translates the relevant part as "as that shall be proved."
 178 Knorr (1989, 557, 561, n. 10) reads وعشرون ظ of the manuscript as wa-‘ashar followed by $w \bar{a} w, n \bar{u} n$, and $t \bar{a}$; unable to translate the final $t \bar{a}$, he notes that the construal of the $w \bar{a} w$ and the $n \bar{u} n$ with the preceding 'ashar would yield an incorrect value of 24 . In fact, the last letter is a $z \bar{a}$ ',

[^47]: which is an abbreviation indicating a conjecture (Gacek 2001, 96, s.v. "ẓann"). Apparently the scribe had doubts about the correctness of the value 24 .

 179 That is, the number 28.
 180 Knorr $(1989,557)$ probably reads 4 of the manuscript as bayyin since he translates the relevant part as "as is evident." This sentence together with the preceding one are probably an interpolation. 181 C 27v.2-29r.6. Columbia 4 corresponds to the first part of Fatih 3. In all probability, both the text and the diagram of this proposition have been corrupted to some extent.
 182 That is, the angle $E K G$.
 183 Knorr (1989, 561, n. 13) is surely right in supposing that the manuscript text from li-anna to $f \bar{\imath}$, most of which is struck through and then marked with the word hāahiya ("margin") twice, was a scholium that was inserted by the copyist into the main text by error; note also that there is a signe de renvoi on top of wa-sittinn, possibly intended to indicate a correction. For $K G: G E$, one can use Elements I. 47 to find that the square of $K G$ is 70227 , which is slightly larger than the square of 265 .

[^48]: ${ }^{184}$ By Scholium 4, $K E: K G=E T: T G$ (via Elements VI.3). By composition and alternation, $K E$ $+K G: G E=K G: T G$.
 ${ }^{185}$ Redefining $G T=153$ and hence $G T^{2}=23409$ by some other measure forces $K G>571$, where $571^{2}=326041$. Then, $K G^{2}+G T^{2}>349450$.
 ${ }^{186}$ Elements VI. 3 gives $K T: K G=I T: G I$. By composition and alternation, $K G: G I=K T+$ $K G: G T$.
 187 There is a smudge of red ink diagonally across the word al-ribwa in the manuscript, which I have taken to be a deliberate erasure since the word is out of place there.

[^49]: 188 Since several lines of text at the bottom of f． 28 v have been marked by a corrector $\left(\mathbf{C}^{\mathbf{3}}\right)$ as an interpolation with the words＂from the margin＂（min al－h $\bar{a} s h i y a)$ and＂up to here＂（ilā hāhun \bar{a} ），and another line containing the letter $h \bar{a} \bar{a}$ for hāshiya（＂margin＂）has been struck out（Gacek 2001，33， s．v．＂ḥāshiyah＂），blocks［8］and［9］in Knorr $(1989,559)$ disappear from this edition and translation． Knorr（1989，562，n．26）erroneously reads min al－hāahiya as min al－ḥāsib（＂from the calculator＂）． 189 Again，most of the first line on f．29r has been marked by a corrector $\left(\mathbf{C}^{\mathbf{3}}\right)$ as an interpolation with the words＂from the margin＂（min al－hāshiya）and＂up to here＂（ilā hāhun $\bar{a})$ ．
 ${ }^{190} \mathbf{C} 29 \mathrm{r} .6-30 \mathrm{v} .2$ ．Columbia 5 corresponds to the second part of Fatih 3.
 191 The word ayḍan is written in a third hand $\left(\mathbf{C}^{\mathbf{3}}\right)$ over a word that is now illegible except for the $l \bar{a} m$ and $t h \bar{a}^{\prime}$ at the end；the three dots of the initial $t h \bar{a}^{\prime}$ of the word thulth have also been marked in this hand．

 192 Of the segment of the text，contained in lines $9-11$ of f．29r，starting with the letter $h \bar{a}^{\prime}$ for h hāshiya（＂margin＂）（Gacek 2001，33，s．v．＂ḥāshiyah＂）and which is marked with＂from a margin＂ （min hāashiya）and＂up to＂（ilā）by a corrector $\left(\mathbf{C}^{\mathbf{3}}\right)$ ，I have removed only the part saying $A B$ is

[^50]: three times $B G$ in power because the ratio $A B: B G$ itself is necessary for calculating $A B+A G$ ： $B G$ below．

 193 Labeling the intersection of $B G$ and $A E$ as P ，Elements VI． 3 gives $A B: B P=A G: G P$ ．Since $A E: E G=A B: B P$ by similarity of the triangles $A B P$ and $A E G, A E: E G=A B+A G: B G$ ． This ratio is smaller than 2911： 780 ．

 194 The sum of these two squares is less than 9082321.
 195 By Elements I．47，the square of $A G$ is equal to the sum of the squares of $A E$ and $E G$ ，which is smaller than 9082321 ．Taking the square root of this number yields the statement．

 196 The stated ratio is smaller than 1007： 66.
 197 Here and in other instances of＇inda，I have followed Knorr＇s（1989，560－561）translation as ＂relative to．＂

[^51]: 198 Perhaps a corrector $\left(\mathbf{C}^{\mathbf{3}}\right)$ read the word as $t i s^{\varsigma} \bar{\imath} n$ by error．The abbreviation $k h \bar{a}$ in the margin might stand for nuskha（＂copy＂or＂variant reading＂）（Gacek 2001，140，s．v．＂nuskhah＂），or perhaps $k h a t a^{\prime}$（＂error＂）．The marginal correction is illegible．See also the discussion by Knorr（1989，546）． 199 In fact，the square root of $40692841 / 36$ is slightly greater than $20172 / 9$ ，so the conclusion does not hold．One can state instead that $A G$ is less than 2017 1／4．
 200 The hiya after $d h \bar{\imath}$（on line 7 of f．30r）probably stands for intih \bar{a}^{\prime}（＂end＂）（Gacek 2001，146， s．v．＂intihā＂）．The reason why the sign is used here is not clear：it is followed by the diagram of the proposition，after which there is another $d h \bar{\imath}$（on line 8 ）and the text continues without any noticeable disruption in meaning．
 201 See note 198.
 202 With the observation that $A G$ is less than $20171 / 4$ ，the assertion that the perimeter of the polygon exceeds $310 / 71$ times the diameter is true．
 203 I follow Knorr（1989，561， 562 n．38）in translating qadr as＂size．＂

[^52]: ${ }^{204}$ C 27v, top of right margin. The placement of this scholium is indicated in the manuscript by a signe de renvoi just before the word fa-nisbat at the beginning of the sentence.

 205 In Scholia 1, 2, and 6, the Arabic word watar is used in the sense of the side of a triangle subtending a given angle.
 ${ }^{206} \mathbf{C}^{2} 27 \mathrm{v}$, middle of right margin. The placement of this scholium is not indicated in the manuscript text.
 207 See note 205.
 ${ }^{208} \mathbf{C}^{2} 27 \mathrm{v}$, bottom of right margin. The placement of this scholium is not indicated in the manuscript text.

[^53]: ${ }^{209} \mathbf{C}^{2} 27 \mathrm{v}$, bottom margin. The placement of this scholium is not indicated in the manuscript text.
 ${ }^{210}$ That is, $K E: K G=E T: T G$.
 ${ }^{211} \mathbf{C}^{2} 28$ r, top margin. The placement of this scholium is not indicated in the manuscript text.
 ${ }^{212} \mathbf{C}^{2} 28$ r, top of left margin. The placement of this scholium is not indicated in the manuscript text.
 ${ }^{213}$ See note 205.
 ${ }^{214}$ Knorr (1989,562, n. 18) reads this as " $E G$," probably due to the resemblance of the initial letter to a $h \vec{a}$.
 ${ }^{215}$ In fact, since $K G>571$, once one assumes that $G T$ is $153, T G^{2}+K G^{2}>349450$.

[^54]: ${ }^{216} \mathbf{C}^{2} 28$ r, middle of left margin. The placement of this scholium is not indicated in the manuscript text.
 ${ }^{217} \mathbf{C}^{2} 28$ r, bottom of left margin. The placement of this scholium is not indicated in the manuscript text.

[^55]: R** يزال يفعل

[^56]:

[^57]: ${ }^{218} \mathbf{R} 1 \mathrm{v} .2-1 \mathrm{v} .22$. Riz $\bar{a} 1$ corresponds to Fatih 1.
 219 This triangle is both absent from the diagram and unnamed throughout the proof.
 220 Literally "abiding by" (qarra bi-).
 221 The pronoun huwa ("it") could refer to both muthallath ("triangle") and shart ("condition").
 222 Namely, the segment of the circle bounded by the chord $B A$ and the arc $B A$. Similar remarks apply to the other segments mentioned in the proof.
 223 Literally "diameter" (qutr).
 224 That is, the triangle $K R Q$.

[^58]: 225 That is, the perimeter of the polygonal figure circumscribed around the circle.
 ${ }^{226}$ R 1v.23-3r.20. Riżā 2 corresponds to Fatih 3.
 ${ }^{227}$ The Arabic is definite (al-musaddas). Evidently a regular hexagon is meant.

[^59]: 228 The correct value of $\sqrt{70227}$ is $265 ; 0,13,35$.
 229 Literally, "by an insignificant thing that the sense does not perceive" (bi-shay' yasīr lā yudrik al-hiss).
 230 That is, $B G: G D>265: 153$.
 231 By Elements VI.3.
 232 The correct value of $40545 / 571$ is $71 ; 0,25,13$.
 $233 G Z$, which was 71 units, is redefined to be 153 units by some other measure. With this redefinition, $B G$ becomes $265 \cdot(153 / 71)=571 ; 3,22,49$ units. Then, $B G: G Z>571: 153$.
 234 The correct value of $\sqrt{349450}$ is $591 ; 8,34,39,30$.
 235 The author probably means $Z B+B G: B G=Z G: G H$.
 ${ }^{236} Z B+B G: B G=1162 ; 8,34: 571$ and $Z G=153$. Since $Z B+B G: B G=Z G: G H, 1162 ; 8,34$ $: 571=153: G H$. This gives $G H=(571 \cdot 153) / 1162 ; 8,34$. If now $G H$ is redefined to be 153 units by some other measure, $B G$ becomes $1162 ; 8,34$.
 ${ }^{237}$ The insertion of a $j \bar{\imath} m$ seems to be a scribal error. As to the last sexagesimal place, even though it seems to be written with a $h \bar{a}^{\prime}$ in the manuscript, calculation of the square of $1162 ; 8,34$ shows it to be 50 .
 238 The correct value of $\sqrt{6,21,39,44 ; 50}$ is $1172 ; 10,15,34<1172 ; 10,16$, so the stated inequality is incorrect.

[^60]: 239 The correct value is $4673 ; 37,50$, which the author rounds up to $4673 ; 38$.
 ${ }^{240}$ Since the correct value of $B G$ is $4673 ; 37,50$ and the author rounds this up, the stated inequality is incorrect by a very small amount.
 241 Again, the regular 96-gon is meant.
 242 The Arabic word used here, taksir, typically means "area" or "volume."
 ${ }^{243}$ That is, $4673 ; 38$. Indeed, $4673 ; 38 \cdot(3+1 / 7)=14688 ; 33,42,51$, which is greater than 14688 by $0 ; 33,42,51$.
 244 The abbreviation after the word "ratio" (nisba), whose last letter is probably a hac despite looking more like a $j \bar{\imath} m$, most likely indicates a correction (Gacek 2001, 85, s.v. "iṣlāḥ"), though it is not clear what it is supposed to correct.

 The use of the word "ratio" (nisba) here is in contrast to the usage in Greek mathematical texts where the difference of two ratios, considered as another ratio, is never expressed in terms of a number.
 245 The Arabic ${ }^{2} l^{c}$ musaddasih \bar{a} is definite. Evidently a regular hexagon inscribed in the circle is meant.

[^61]: 246 The correct value is $1350 ; 59,58,40$.
 ${ }^{247}$ That is, $A B: B G=1350 ; 59,58,40: 780<1351: 780$.
 248 Assuming there is no textual corruption here, the author probably wants to assert that since the angle $D G B$, equal to the angle $D G E$, is equal to the angle $G A D$, and since the angle at D is common to the triangles $A D G$ and $G D E$, it follows that these triangles are similar to each other.
 249 The first two equalities of ratios follow from the similarity of the triangles $A D G$ and $G D E$. The third follows from Elements VI.3.

 250 It takes more than one alternation to get this equality of ratios. First, alternation gives $A G$: $A B=G E: B E$. Next, composition gives $A G+A B: A B=B G: B E$. Finally, alternation gives the desired equality
 ${ }^{251}$ It should be noted that the fact that the angle A is a third of a right angle is not used to deduce this proportion. So the author uses the same line of reasoning implicitly in the remainder of the

[^62]: proof, marked with the words "based on the mentioned ratio" ('alā al-nisba al-madhkūra), to assert the validity of other, similar, proportions.
 252 In fact, $\sqrt{42,2,52,1}>3013 ; 41,20,10$, so the stated inequality is incorrect.
 $2535924 ; 41,20: 780$ is in fact slightly smaller than 1823:240.
 ${ }^{254} 3669 ; 35,13: 40$ is in fact slightly greater than $1007: 11$.
 255 As the following sentences reveal, the author intends to consider 1007: 66 as an approximation to $A G: G H$.
 ${ }^{256}$ It is clear that the greater number is 1007 and the lesser number is 66 . $\sqrt{4,42,53,25}$ is slightly greater than $1009 ; 9,36$, so the stated inequality is incorrect.
 257 The correct value of $\sqrt{18,50,20,57 ; 9}$ is $2017 ; 15$, which is greater than $2017 ; 11$, so the stated inequality is incorrect.

[^63]: ${ }^{258}$ Literally＂the side of the figure＂（ dil $^{\text {c }}$ al－shakl）．Evidently，the 96－gon considered here is regular． 259 This addition，whose disappearance from the manuscript is easily explained by homoeoarchon， is necessary so that the expressions＂this number＂and＂other number＂in the next sentence make sense．
 ${ }^{260}$ The letters $m \bar{\imath} m h \bar{a}^{\prime}$ in the manuscript seem to be simply a scribal error－perhaps an indication that the scribe was not a native Arabic speaker－for the first two letters of the following muhit ， which the scribe did not then bother to erase．

 261 That is，the 96－gon inscribed in the circle．
 ${ }^{262} \mathbf{R} 3 \mathrm{r} .20-3 \mathrm{v} .23$ ．Riz $\bar{a} \bar{a} 3$ corresponds to Fatih 2.
 ${ }^{263}$ That is，to the radius of the circle．
 ${ }^{264} E G \cdot G B+G D^{2}=G D^{2}$ by Elements II．5．It is not clear why there is a＂since＂（li－anna）．
 265 Literally，＂it preceded＂（taqaddama）．
 ${ }^{266}$ By Riżā 1.

[^64]: 267 These words, together with the mathematical mistake indicated in note 273 , probably indicate that all that comes after this point is an interpolation.
 268 That is, to 14.
 269 The number 3 is referred to as feminine (allat $\bar{\imath}$) but 14 is referred to as masculine (ilayhi, sub'uhu, and niṣf sub'ihi), in accordance with Berggren's remark (2007, 537).
 ${ }^{270}$ From this point on, the numbers 11 and 14 are written in abjad numerals.

[^65]: ${ }^{271}$ In this instance of "a seventh of it and a half of a seventh of it" (sub'ahu wa-nisf subihi) and the next, the word "measure" (mis $\bar{a} h ̣ a)$ is referred to by a masculine suffixed pronoun. Again, in view of Berggren's remark $(2007,537)$, this probably indicates that the word misāha is being construed as a number.

 272 That is, the square surrounding the circle.
 273 This is a serious mathematical mistake. Apparently, the author is under the impression that if multiplying by 11 and then dividing by 14 is equivalent to subtracting a seventh and a half of a seventh, as is done in the next sentence, then multiplying by 14 and then dividing by 11 must be equivalent to adding a seventh and a half of a seventh.

