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I Introduction1

The Archimedes Palimpsest, referred to in Heiberg [1910–1915] as ‘Codex C’, had

a complicated history that is understood only in part (see e.g. Netz [2000]). Orig-

inally a tenth century manuscript containing several works by Archimedes, it was

palimpsested as a Greek prayer book in the twelfth or thirteenth century, and then

remained unknown to the scholarly world until it was rediscovered in Istanbul at

the end of the nineteenth century. The manuscript was then briefly studied by

Heiberg, mostly during a visit made in 1906.2 This led to Heiberg’s second edition

of Archimedes’ works. The manuscript then disappeared from Istanbul, perhaps

in the aftermath of the First World War. Following a long period of obscurity it

finally re-appeared in 1998 in a Christies’ sale in New York. The current owner has

deposited the manuscript at the Walters Art Museum, Baltimore, for the purposes

of conservation, imaging and research, which will lead to a complete facsimile and

edition of the manuscript.

As is well known, the manuscript is unique in several ways: it provides our only

Greek text for On Floating Bodies and for the Stomachion, and, most important,

1The study leading to this work was enabled by many people. Our deepest words of thanks and

appreciation go to all: to William Noel, curator of manuscripts at the Walters Art Museum, and di-

rector of the Archimedes Palimpsest Project; to Abigail Quandt, senior conservator of manuscripts,

who is conserving the manuscript; to the imagers of the palimpsest — Roger Easton of the Rochester

Institute of Technology, William Christens-Barry of Johns Hopkins University, and Keith Knox

of the Xerox Corporation; to Michael Toth of R. B. Toth Associates; and to the owner of the

Archimedes palimpsest, for allowing the study of the palimpsest, and for the many ways in which

he assisted in this difficult task.

2Heiberg’s study was mostly based on an incomplete set of photos taken during that 1906 visit.

This set of photos is in the Royal Danish Library, Ms. Phot. 38, currently on loan to the Walters

Art Museum, and provides important insight to Heiberg’s approach as an editor.
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it provides our only text for the Method. It is also in very bad physical shape, so

that the usual difficulties of reading an inferior writing in a palimpsest are com-

pounded by the difficulties of reading faint, abraded or heavily molded text. Much

of the deterioration has occurred during the twentieth century (as can be clearly

learned from Heiberg’s photos). Still, Heiberg’s success in recovering so much of

the manuscript is a tribute to his genius. Where he had guidance for his readings

(in works attested by other manuscripts), his readings were often very thorough,

and even for the previously unknown Stomachion and the Method he was capable of

reading over 80 percent of the extant text. (It is important to note also that, through

the process of palimpsesting the codex, as well as through later losses, a significant

proportion of the original Archimedes text was lost, apparently irretrievably: the

extant percentage, once again, seems to be somewhat above 80 percent). It is only

through the help of modern technology — ultra-violet light, as well as through dig-

ital image capture and enhancement — that substantial progress can now be made

over Heiberg. Even so, Heiberg’s own readings greatly help the decipherment: when

we are lost in the jungle of faint traces yielded by digital imagery, it is Heiberg’s

voice that leads us through the thicket.

The portion that Heiberg was able to recover from the Method formed a major

discovery. Archimedes, we learned, had advanced the application of mechanics to

geometry (by “mechanics” we here mean such results as are developed in Planes in

Equilibrium, or results analogous to them), much beyond the level of the Quadrature

of the Parabola. Furthermore, unlike anywhere else in the previously known works,

Archimedes had boldly applied the use of “indivisibles”3, composing n + 1 dimen-

sional figures from infinitely many n-dimensional ones to derive the properties of the

n + 1 dimensional figures from those of the n-dimensional ones. Finally, in his in-

troduction, Archimedes offered several tantalizing meta-mathematical observations.

In particular, Achimedes stated that the Method was in some sense non-rigorous,

falling short of strict geometrical proof, referring to it as “mechanical”, in distinction

from “geometrical”.4

It is not surprising, then, that during the twentieth century study of Archimedes

was dominated by the fascinating questions opened up by the Method. The best

study remains Dijksterhuis [1987], with an extensive bibliographical essay by Knorr

covering the literature up to that time. In recent years one can mention especially,

among studies of the Method relevant to this article, the articles Sato [1986], and

Knorr [1996].

It is a feature of the Method that, with its ‘methodological’ interest, it either

3We use the term “indivisibles” as a convenient label for the slicing technique used in the Method by

Archimedes, and we do not make any special claim concerning its possible similarity to the notion

and technique used by Cavalieri (from whom the term is borrowed).

4Heiberg [1913] 428.18–430.18.
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proves results already proved elsewhere through new techniques or, when it proves

new results, it proves them through more than a single technique, allowing us to see

side by side the nature of those techniques. The proof of theorems already proved

elsewhere (propositions 1–11) always combines the two novel features: application to

geometry of mechanics, and the use of indivisibles. The final sequence of theorems

in the extant text (props. 12–15)5, has a more complex structure. Archimedes first

proves a certain result through the same combination of mechanics and indivisibles

(props. 12–13); he then proves the same result again, through indivisibles alone

(prop. 14); and finally proves the same result in a ‘classical’ manner, using neither

mechanics nor indivisibles (prop. 15). Here the extant text breaks off. Based on

Archimedes’ introduction, it appears that the conclusion of the work went through

a similar set of several proofs, for another new result.

Among the three options covered by this final sequence, the middle one has a

special position. Proofs combining mechanics and indivisibles are well attested from

elsewhere in the Method, while ‘classical’ proofs are to be found everywhere in the

Archimedean corpus. Here, however, is the only extant proof by Archimedes relying

on the use of indivisibles alone. Perhaps for this very reason, Heiberg had rather

more difficulties with this proposition — which he called ‘14’, and which we shall call

‘the Indivisibles Proof’ — than with most others in the treatise. Admittedly, the

physical state of the manuscript provided Heiberg with severe problems. The text

occupies the whole of the bifolium 105–110 of Euchologion, the prayer book written

over the Archimedean text, going on into a small part of the bifolium 158–1596. The

bifolium 158–159 is fairly readable in its small part occupied by Proposition14, but

the bifolium 105–110, already in Heiberg’s time, was much abraded in places, espe-

cially in its lower half, leaf 105. Heiberg did not even bother to take photos of this

leaf, and many of his readings here were either conjectural or lacunose. In particu-

5A caveat ought to be mentioned here. As can be clearly seen in Heiberg’s apparatus itself, there

is no textual authority for the proposition numberings he had introduced. To a certain extent,

those numbers distort the structure of the work: for instance, the meta-mathematical observation

between what Heiberg calls ‘propositions 1 and 2’ (Heiberg [1913] 438.16–21) belongs to neither

proposition: by inserting the numberings, Heiberg assigned it arbitrarily to proposition 2. Thus

such numbers are to be used with caution; they are of course indispensable for reference purposes.

6It is probable, though not certain, that the proof starts at the very start of bifolium 105–110. The

bifolium immediately preceding this one was lost already when the book was palimpsested, in the

twelfth or thirteenth century, and so there is a major lacuna which cannot be filled, immediately

prior to the beginning of our text. Because of the way the palimpsest was made, each original

leaf of the Archimedes manuscript was folded and made into two leaves of the prayer book; the

order of the original leaves was greatly disturbed — first 110r–105v, then its verso side 110v–105r,

continuing into 158r–159v where the diagram appears.
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lar, he left the column 105r. col. 1 nearly totally unread.7 We have now been able

to complete Heiberg’s reading through most of the text, confirming and sometimes

refining his conjectures, and filling in the lacuna. We believe the new reading has

sufficient interest to merit a separate publication, anticipating the planned publica-

tion of the entire manuscript. Heiberg noted, concerning 105r. col. 1, this (Heiberg

[1913] 499 n. 1): ‘Quid in tanta lacuna fuerit dictum, non exputo’ — ‘I do not guess

what was written in such a long lacuna’. This lacuna, it turns out, changes the

nature of the proof and thus, potentially, of our understanding of Archimedes’ use

of indivisibles — and, consequently, of much else.

II Method Proposition 14: Translation

The following translation of Method proposition 14 is based on a study, in situ, of

the bifolia 105–110 and 158–159 with the aid of ultra-violet light. Further, and more

important, the ‘verso’ side of the bifolium 105–110 (110v–105r) has been digitally

imaged and processed by the imaging team8. We have studied those images with

the aid of Adobe Photoshop and other prgrams, and the edition in the Appendix

is based on this study. Though we give the traslation of the whole proposition 14

in the following, only the part from 110v–105r is based on this new edition. This is

the part where the crucial mathematical issues are located.

As for the text before and after 110v–105r, we offer here scattered improvements

on Heiberg’s text in our translation, and we plan to publish its new edition as part

2 of the present article.

Being as it is in the bifolium 158–159, the diagram, as well, is not edited from the

manuscript. We do however attempt to keep close to the “spirit” of the manuscript

diagram. We believe that, in general, manuscript diagrams offer valid evidence for

the form of diagrams in antiquity. In this case, we note the interesting convention

adopted at some stage of the transmission (possibly, by Archimedes himself), to

represent the parabolic segment by a triangle. This convention is helpful for allowing

a clear resolution of the section from the semi-circle within which it is inscribed. The

convention is thus comparable to another one observed in the manuscripts of Sphere

and Cylinder, where the polygon inscribed (or circumscribed) in (or around) a circle,

is often represented by a series of arcs drawn in the opposite direction to the circle.

In the proposition before us, a curved line is represented by a straight line; in the

Sphere and Cylinder, a straight line is represented by a curved line. The structural

7The Archimedean text is written in two columns; notice that columns cross from one leaf to

another in the same bifolium, so that 110r. col. 1, for instance, is followed not by 110r. col. 2, but

by 105v. col. 1.

8See above n. 1. It is hoped that an image of this leaf shall soon be made available to the public in

some electronic form.
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principle is the same, and confirms that such conventions are not the residues of

textual corruption, but represent genuine visual habits of the ancient audience. We

believe that, just as reading Greek mathematics demands that we adjust to certain

linguistic habits, it also demands that we adjust to certain visual habits. We thus

keep the representation of the segment by triangle. With little practice you, too,

will see a parabola.

For ease of reference, we insert Latin letters to enumerate steps of construction

((a), (b), (c) etc.), and Arabic numerals to enumerate steps of argument ((1), (2), (3)

etc.). References in the footnotes to the Elements or to the Conics are not intended

to be complete, nor do we suggest that Archimedes or his audience referred to those

works; they merely serve to signal the Greek mathematical tool-box relevant for the

claim made.

B Θ A

H
M H E

Λ Σ

Ξ

Γ N Z ∆

(a) Let there be a right prism having square bases, (b) and let one of its bases

be the square ABΓ∆, (c) and let a cylinder be inscribed inside the prism, and let

the base of the cylinder be the circle EZHΘ, touching the sides of the <square>

ABΓ∆ at the <points> E, Z, H, Θ, (d) and let a plane be drawn through its

<= the circle’s> centre, and <through> the side, above Γ∆, of the square in the

plane opposite to ABΓ∆; (1) so it shall cut, of the whole prism, another <prism>,

which shall be a fourth part of the whole prism9. (2) This, <other> prism shall be

contained by three parallelograms, and two triangles opposite to each other. (e) So,

let a section of a right-angled cone10 be drawn in the semi-circle EZH, (f) and let

9Elements I.41, XI.32.

10What we call a ‘parabola’.
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its diameter be ZK, (g) and let the same <line> ZK also be that, <applied>

on which, the <lines> drawn in the section are equal in square11, (h) and let some

<line>, <namely> MN, be drawn in the parallelogram ∆H, being parallel to KZ.

(3) So it shall cut the circumference of the semi-circle at Ξ, and that of the section

of the cone at Λ. (4) And the <rectangle> contained by the <lines> MNΛ is equal

to the <square> on NZ. (5) For this is clear. 12 (6) So, through this, it shall be: as

MN to NΛ, the <square> on KH to the <square> on ΛΣ 13. (i) And let a plane be

set up on MN, right to the <line> EH. (7) So the plane shall make a right angled

triangle in the prism cut off from the whole prism, of which <= triangle> one of the

<sides> around the right angle shall be MN, while the other <shall be> drawn up

from N in the plane on Γ∆, right to the <line> Γ∆, equal to the axis of the cylinder,

and the hypoteneuse <shall> be in the cutting plane itself; (8) and it shall also make

a cut, a right-angled triangle in the segment cut off from the cylinder by the plane

that was drawn through EH and <through> the side of the square opposite to Γ∆,

of which <= triangle> one of the <sides> around the right angle shall be MΞ, and

the other <shall be> in the surface of the cylinder drawn up from Ξ, right to the

plane KN, and the hypoteneuse <shall be> in the cutting plane. (9) Now, similarly,

since the <rectangle> contained by MN, MΛ is equal to the <square> on MΞ ((10)

for this is obvious),14 (11) it shall be: as MN to MΛ, so the <square> on MN to the

11A formulaic expression, well-known from Apollonius but also attested in Archimedes (Conoids

and Spheroids 3, 272.16–17), for what we call the ‘latus rectum’ of a conic section. In the case of

a parabola and in terms of the diagram at hand, this is the line L satisfying the property that, for

every line on the segment such as ΛΣ, r(ΣZ, L) = q(ΛΣ) (r(A, B) and q(AB) represent rectangle

contained by lines A and B, and square on AB, respectively). Archimedes’ definition provides an

elegant way of making the parabola cut the circle at H, E (r(HK,ZK) = q(ZK)). For constructing

a parabola from a diameter, implied vertex, and latus rectum, see Apollonius’ Conics I.52. Heiberg

was unable to read the text of Step g, which is the most important improvement on his text we

offer outside the edited text below. The Greek seems to read: êstw dà kaÈ par' ªn dÔnantai aË

katagìmenai ân t¨ù tom� aÕth � ZK.

12Directly from the property of the parabola: r(ZK,ZΣ) = q(ΛΣ), but ZK = MN, ZΣ = NΛ,

ΛΣ = NZ (Elem. I.41).

13MN : NΛ :: q(MN) : r(MN,NΛ) (Elem. VI, 1); substituting r(MN,NΛ) with q(NZ) (Step 4), we

have MN : NΛ :: q(MN) : q(NZ). But since MN = KH and NZ = ΛΣ, we get MN : NΛ :: q(KH) :

q(ΛΣ). Note that this Step 6 has considerable texual and logical difficulties. The three points K,

H, and Λ are dotted in Heiberg’s text (i.e., they were illegible). Though Heiberg’s edition yields a

mathematically correct relation as we have just explained, this relation is never used again in the

rest of the proposition. This text might perhaps be altered in the second part of this article.

14Step 9 provides the main geometrical relation of the proposition — the beautiful observation that,

as it were, a circle is the mean between a line and a parabola. The reasoning can be provided in

this manner: MN = KZ = KΞ, therefore q(MN) = q(KΞ). But q(MN) = r(MN,NΛ) + r(MN,MΛ)
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square on MΞ. (12) But as the square on MN to the square on MΞ, so the triangle on

MN, coming about in the prism, to the triangle on MΞ, taken away in the segment

by the surface of the cylinder; (13) Therefore as MN to MΛ, so the triangle to the

triangle. (14) And similarly we shall also prove that if any other <line> is drawn

in the parallelogram circumscribed around the section, parallel to KZ. And a plane

is set up on the drawn <parallel line>, right to the <line> EH, it shall be: as the

triangle made in the prism to the triangle in the segment cut off from the cylinder,

so the <line> drawn in the parallelogram ∆H, being parallel to KZ, to the <line>

taken by the section of the right-angled cone HZ and <by> the diameter EH. (15)

Now, the parallelogram ΓE∆H being filled by the <lines> drawn parallel to KZ,

(16) and the segment contained by both: the section of the right-angled cone, and

<by> the diameter EH, <being filled> by the <lines> in the segment, (17) and

also the prism being filled by the triangles that come to be in it, (18) as well as the

segment cut off from the cylinder, (19) there are certain magnitudes equal to each

other — the triangles in the prism; (20) and there are other magnitudes, which are

lines in the parallelogram ∆H, being parallel to ZKΘ, which are both equal to each

other (21) and equal in multitude to the triangles in the prism; (22) and there are

other triangles, in the segment cut off, equal in multitude to the triangles that come

about in the prism. (23) And other lines taken away from the lines drawn parallel to

KZ between the section of the right-angled cone and EH, shall be equal in multitude

to the <lines> drawn parallel to KZ in the parallelogram ∆H, (24) it shall be, as

well: as all the triangles in the prism to all the triangles taken away in the segment

cut off from the cylinder, so all the lines in the parallelogram ∆H to all the lines

between the section of the right-angled cone and the line EH. (25) And, from the

triangles in the prism, is composed the prism; (26) while, from the <triangles>

in the segment cut off from the cylinder, <is composed> the segment; (27) and,

from the <lines> in the parallelogram ∆H, parallel to KZ, <is composed> the

parallelogram ∆H; (28) and, from the lines between the section of the right-angled

cone and EH, <is composed> the segment [of the parabola]15; (29) therefore as

the prism to the segment <cut off> from the cylinder, so the parallelogram ∆H to

the segment EZH contained by the section of the right-angled cone and <by> the

line EH. (30) But the parallelogram ∆H is half as much again as the segment so

contained by the section of the right-angled cone and <by> the line EH ((31) for

this has been proved in the <treatises> sent out previously16); (32) therefore the

(Elem. II–2), and q(KΞ) = q(MK) + q(MΞ) = q(NZ) + q(MΞ). Hence r(MN,NΛ) + r(MN,MΛ) =

q(NZ) + q(MΞ), of which r(MN,NΛ) = q(NZ) (Step 4). Therefore, r(MN,MΛ) = q(MΞ).

15The square brackets follow Heiberg’s view — no doubt correct — that the word ‘parabola’ is a

late gloss introduced inito the text (the term of course dates from Apollonius).

16An equivalent result (one also requires Elements I.41) is proved in the first proposition of the

Method itself, but Archimedes clearly refers to the more rigorous proof in the treatise Quadrature
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prism, too, is half as large again as the segment taken away from the cylinder; (33)

therefore, of such <parts> that the segment of the cylinder is <made> of two, the

prism is <made> of three, (34) but, of such <parts> that the prism is <made> of

three, the whole prism containing the cylinder is made <of> 12, (35) through the

one being 4 <times> the other. (36) Therefore, of such <parts> that the segment

of the cylinder is <made> of two, the whole prism is made <of> 12; (37) so that

the segment cut off from the whole cylinder is a sixth part of the prism.

III Discussion17

III.1 The Indivisibles Proof: Structure of the Argument

The proof of the proposition falls into three parts. The first is Steps 1–14, reaching

the conclusion that, for any chance line drawn in the parallelogram (that is, rect-

angle) HΓ∆E, parallel to KZ, and triangles being set up on it inside the prism and

the cylindrical segment, we have:

(triangle on MN):(triangle on MΞ) :: (MN):(MΛ)

That is:

(triangle in prism):(triangle in cylinderical segment)

::(line in parallelogram-rectangle):(line in parabolic segment)

or, to put this succinctly:

△pr:△cyl :: lllrect:lllsegm

This is the claim of Step 14.

The second part, Steps 14–29, transforms Step 14 into the proportion of Step 29:

(prism):(cylindrical segment)::(parallelogram-rectangle):(parabolic segment)

pr:cyl :: rect:segm

In other words, this part transforms the proportion of Step 14, holding between two

plane areas and two lines, into the proportion of Step 29, holding between two solids

and two plane areas, each object transformed into the corresponding object in the

higher dimensionality.

The third part, Steps 29–37, simplifies the proportion of Step 29: the ratio of

the parallelogram-rectangle to the parabolic segment is known from elsewhere, and

of the Parabola.

17For this section, we thank Henry Mendell and Pier Daniele Napolitani for important suggestions.
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then simple arithmetical operations yield the conclusion of the proposition: the

cylindrical segment is one-sixth the entire prism (since it is two-thirds the triangular

prism directly enclosing it).

The first part is an application of proportion theory (using conic sections) to the

construction. This part is ingenious and beautiful, but also straightforward, posing

no conceptual difficulties. The third part is even simpler, combining a previously

known result for parabolic segments, together with mere arithmetical manipulations.

The conceptual questions concerning this proposition are confined to the second

part: the transformation of Step 14 to Step 29. This is also the part affected by the

new reading. Heiberg’s Greek text broke off right at the beginning of Step 17, and

resumed in the middle of Step 23. He could easily guess the content of Steps 17–18,

but was at a loss for the content of Step 23. In logical terms, then, he had a lacuna

for Steps 19–23. To see the significance of these steps, we shall now summarize the

second part of the proof, Steps 14–29, first skipping Steps 19–23 (that is, setting

out the argument as it was known during the twentieth century), and then bringing

those steps in.

Step 14: The Fundamental Proportion △pr:△cyl :: lllrect:lllsegm
Steps 15–18: Four reconceptions, an object being, effectively, reconceived as its con-

stituents:

Step 15 rect as made up of the lrect in it

Step 16 segm as made up of the lsegm in it

Step 17 pr as made up of the △pr in it

Step 18 cyl as made up of the △cyl in it

Step 24: A restatement of the Fundamental Proportion, not in “any” terms, now,

but in “all” terms: all △pr:all △cyl :: all lllrect : all lllsegm
Steps 25–28: Four assertions of identity (expressed in terms of “composition”)

Step 25 pr is composed of the △pr in it

Step 26 cyl is composed of the △cyl in it

Step 27 rect is composed of the lllrect in it

Step 28 segm is composed of the lllsegm in it18

Step 29: the Fundamental Proportion transformed in dimensions

pr:cyl :: rect:segm

The argument, without Steps 19–23, seems to be merely moving, gingerly, from the

Fundamental Proportion — itself rigorously proved — to the conclusion of Step

29. This conclusion appears finally like a sheer leap of faith, based on nothing but

18It is typical of the Greek mathematical style that the sequence of objects in Steps 15–18 differs

from that of Steps 25–28.
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a trust in indivisibles. Perhaps to accommodate this leap, then, the Fundamental

Proportion is gradually restated. In Steps 15–19 its four terms are correlated with

the higher-dimensional objects; in Step 24 the proportion is repeated, “all” substi-

tuted for “any”; in Steps 25–28 the four terms are once again correlated with the

higher-dimension objects, though this time more explicitly identified with them; fi-

nally Step 29 makes the bold claim of the higher-dimensional proportion itself. This

long stretch of argument does not appear to do anything except appeal to a principle

of indivisibles. Indeed it can be argued that Steps 15–24, under this reading, are

redundant.

Why did no one raise the alarm? How could scholarly literature be content with a

verbose, even a sloppy Archimedes? There were two major schools of thought. The

dominant one, whose best known proponent is Dijksterhuis, applies here its basic

understanding of theMethod, as a heuristic text where requirements of rigour are put

aside. A certain appeal to a principle of indivisibles is made throughout the Method

(props. 1–13), though elsewhere accompanied by an appeal to mechanics. Here,

mechanics being dropped, indivisibles remain, still as a mere heuristic tool. The

argument, then, has no pretensions for validity. Another, more recent and less well

known school of thought, is found in Sato (1986) and Knorr (1996). Both, through

different avenues, reached the same conclusion: Greek mathematicians accepted

indivisibles arguments of the kind above as valid. Thus the argument here might be

a bit ponderous, but this is just the Greek way of following through the formulae of

a well-established sequence of proof.

Briefly, we now know that both schools are at least partly wrong, and while either

might be partly right, we still cannot tell which, if any. The argument is clearly not

a simple application of indivisibles, so it is not merely “propositions 1–13 minus

mechanics” as Dijksterhuis took it. Nor can we say on the basis of this passage that

the Greeks considered the argument from indivisibles to be valid as such, as Sato

and Knorr thought. On the other hand, we still cannot say whether Archimedes

considered this as a merely heuristic argument, or as a rigorous one.

Here is how the structure of the argument appears with Steps 19–23 reinstated:

Step 14: The Fundamental Proportion △pr:△cyl :: lllrect:lllsegm
Steps 15–18: Reconceptions: rect as made up of the lllrect in it, segm as made up

of the lllsegm in it, pr as made up of the △pr in it, cyl as made up of the

△cyl in it.

Step 19: The △pr are “magnitudes” equal to each other

Step 20: The lllrect are “other magnitudes” equal to each other, and

Step 21: The lllrect are “equal in multitude” to the △pr

Step 22: The △cyl are “equal in multitude” to the △pr

Step 23: The lllsegm are “equal in multitude” to the lllrect
Step 24: The Fundamental Proportion in “all” terms:
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all △pr:all △cyl :: all lllrect:all lllsegm
Steps 25–28: Four assertions of identity: pr is composed of the △pr in it, cyl is

composed of the △cyl in it, rect is composed of the lllrect in it, segm is

composed of the lllsegm in it

Step 29: The Fundamental Proportion transformed in dimensions:

pr:cyl :: rect:segm.

The logic of the argument is still not self-obvious. The sense of each individual

statement is clear, even the difficult expression “equal in multitude” which must

mean “being in the same number of objects”.19 But how to make sense of the

contribution of Steps 19–23 to the argument as a whole?

Steps 22–23 could have been there — had they been on their own — merely

to guard against the possibility that the proportions “overlap” in such ways that,

although each four-term set is proportional, the four sums of sets are no longer

proportional. This could have been the case had, say, all infinitely many “triangles

in the prism” been in the said ratio to only a single “triangle in the cylinder”, so

that the summation of the “triangles in the prism” would go a dimension up and

yield a prism while the summation of “triangles in the cylinder” remained a mere

triangle. Assume then that the lines in the rectangle and in the segment behave as

they should, summing into plane areas: clearly then a prism to a triangle is not the

same as an area to an area.

However, how does one make sense of Steps 19–21? These make three claims,

of no obvious inherent relevance to the argument: △pr are “magnitudes” equal

to each other, lllrect are “other magnitudes” equal to each other, lllrect are

“equal in multitude” to the △pr. In other words: the two sets, △pr, lllrect, are

each made of magnitudes all equal to each other; the number of objects in both sets

is the same. What is the contribution of these claims to the argument as a whole?

The tell-tale signs are the formulaic, redundant words in these Steps: “there are

certain magnitudes . . . there are other magnitudes . . . ”. In the economy of the Greek

mathematical lexicon, such redundancy points to an implicit reference to a previous

result. In fact, we do not need to go far in search of this result. Archimedes has

explicitly quoted it in the introduction to the treatise. Here, then, is what Heiberg

called “Lemma 11”:

‘If however many magnitudes have the same ratio (equal <to them> by multi-

tude), two by two, with other magnitudes as those similarly ordered, and the first

magnitudes — whether all or some of them — are to other magnitudes in however

many ratios, and the latter magnitudes are in the same ratios to other magnitudes,

respectively, <then> all the first magnitudes to all the <magnitudes> they stand

in ratio to, have a ratio that all the latter magnitudes have to all the <magnitudes>

19This is difficult, because the sets in question are all infinite; more on this below.
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they stand in ratio to.’

This lemma sets out certain conditions holding for a collection of four sets, which

we may call, for the sake of this anachronistic exposition, A, B, C and D with

the members (a1, a2, a3, . . . , an), (b1, b2, b3, . . . , bn), (c1, c2, c3, . . . , cn),

(d1, d2, d3, . . . , dn):

(i) A and B are isomorphic under ratio. For each k, m we have ak:am :: bk:bm.

(ii) A and B have the same number of terms.

(iii) C and D are produced, term by term, from corresponding terms in A, B, always

through proportions (which need not be all the same). For every applicable k,

we have ak:ck :: bk:dk.

(iv) C and D need not correspond to all the members of A and B but, instead, may

correspond merely to subsets of them. However (this condition is not fully

explicit, but is implied by the way in which the previous condition is set out),

the subsets to which they correspond must have the same number of terms.

When all these conditions (i)–(iv) are met, then the sums of the sets fulfil:

Σa:Σc :: Σb:Σd

As we shall mention again below, this result was proved by Archimedes in Conoids

and Spheroids 1; the explicit reference to Conoids and Spheroids, in the text of the

Method, is probably, as suggested by Heiberg, a (correct) interpolation.20

The structure of the entire argument of Steps 14–29 can now finally be clarified.

In Step 14, the Fundamental Proportion △pr:△cyl :: lllrect:lllsegm is stated.

In Steps 15–18, the higher-dimensional objects are logically reconceived as sets

of objects of lower dimensionality — the four sets of Lemma 11. A may stand for

the △pr, B for the lllrect, C for the △cyl and D for the lllsegm.

For Lemma 11 to apply to these four sets, certain conditions need to be met, and

these are the conditions of Steps 14, 19–23:

(iii) Step 14: C and D are produced, term by term, from A and B, through propor-

tions.

(i) Steps 19–20, taken together, show that the sets A and B are isomorphic under

ratio: since all members of A are equal to each other, and all members of B

are equal to each other, then it follows trivially that for each pair of A terms

and B terms, ak:am :: bk:bm.

(ii) Step 21: A and B have the same number of terms.

20Heiberg [1913] 434 n. 1.
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(iv) Steps 22–23 (together with Step 21): C and D correspond to sets with the same

number of terms.

Step 24: The application of Lemma 11 to these four sets is now seen to hold, and

it yields:

Σ△pr:Σ△cyl :: Σlllrect:Σlllsegm

This can now be seen as a logical conclusion of the entire sequence of Steps 14–23,

taken as a whole.

Steps 25–28: Now the logical sets — “all the triangles”, “all the lines” — are

transformed into the geometrical objects they constitute.

Step 29: The claim of Step 24 is now reiterated for the sets conceived as the

geometrical objects they constitute.

Notice how deeply the structure of the argument depends upon Steps 19–23.

Without them, Steps 14 and 15–18 appear to be merely a proportion, and its map-

ping into a higher dimensionality; in fact these steps set out conditions for the

applicability of a specific condition, that of Lemma 11. Step 24 appears like the

conclusion of an indivisibles argument; in fact it is the conclusion of Lemma 11.

Steps 25–28, 29, appear to restate respectively, with minor variation, Steps 15–18,

24; in fact those steps all differ considerably in nature, and it is only from Steps

25 onwards that higher-dimensional objects are directly contemplated. There is

nothing redundant: the proof is, in fact, a logical masterpiece, based not on a sim-

ple assumption of indivisibles but on a very sophisticated argument in proportion

theory.

All of which opens a can of worms. We move on to note some of the difficulties

and questions arising.

III.2 The Indivisibles Proof: Some Difficulties and Questions

We have seen how deeply the Indivisibles Proof relies upon Lemma 11. This im-

mediately gives rise to a serious difficulty. To the extent that Lemma 11 is indeed

meant to be supported by the proof of Conoids and Spheroids 1, Archimedes is in

danger of committing a fallacy. This is because the proof of Conoids and Spheroids

1 is clearly conceived to apply for a finite number of magnitudes. For instance, the

proof makes use of the ratio of the sum of a set to one of its members. In the case

of an infinite set of the kind we have here, this results in the ratio of a plane, say, to

a line, which normally we would consider meaningless.21 The proof of Conoids and

Spheroids 1 does not lend itself to restatement without such operations.

There are many ways one can react to this difficulty. First, the proof may indeed

21In this context of bold departures from standard practice, can one envisage, perhaps, Archimedes

admitting such a ratio as valid? We believe this is a possible, but certainly a very extreme suggestion.
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have been meant as “heuristic”, the lack of rigour wholly due to the extension of

Lemma 11 into the infinite case. Or the other extreme: the proof was considered

to be perfectly valid: Archimedes believed that Lemma 11 in fact held for the

infinite case, its method of proof notwithstanding. (After all, Greek proofs are often

considered to hold for a case more general than that for which they are proved.)

Or Archimedes may have thought Lemma 11 was true but as yet unproved for the

infinite case, the Indivisibles Proof being, for the time being, hypothetically valid.

Many such possibilities may be further suggested and, in this article, we do not try

to decide between them.

Related to the question of how Lemma 11 is taken is the question of the rela-

tionship between the Indivisibles Proof and the mechanical proofs of the Method

(Propositions 1–13). The situation can now be seen as follows:

• Both the mechanical proofs, and the Indivisibles Proof, employ a reconception

of an object as composed of its lower dimensionality constituents.

• The mechanical proofs supplement this reconception with specific mechanical

assumptions, for instance that, if infinitely many objects all have their centre

of weight at a certain point X, then, when they are summed up and considered

as a geometrical object of a higher dimension, they shall still have the same

centre of weight X.

• The Indivisibles Proof supplements the reconception of the object, with Lemma

11.

Thus a certain parallelism may be perceived between the mechanical proposi-

tions, and the Indivisibles Proof. None uses indivisibles alone. Both essentially rely

upon deriving proportions for infinitely many objects. (Of course, statements about

centres of weight are equivalent to geometrical proportion statements. These are

proportions holding between weights, i.e. geometrical measures such as length, area,

etc.; and distances). Both transform those infinitely many proportions into a single

proportion. Both do so through specific extra-assumptions, different in each case.

Now the question arises: which of those extra-assumptions is considered fully to val-

idate its conclusion? The answer might be all, none, or either. Perhaps both kinds

of arguments were considered valid by Archimedes (the “mechanical” propositions

being un-geometrical simply because of their mention of the principle of the balance,

un-geometrical in spite of being valid). Or perhaps both the balance assumptions, as

well as Lemma 11, are no more than stopgap measures, designed to make somewhat

more probable an argument that is seen as deeply problematical. Or perhaps one is

considered valid, and not the other (but then which?). Once again, we cannot offer

an answer. It is important to stress, however, that it has now become impossible

to understand the mechanical propositions independently of the Indivisibles Proof.

The interpretation of the mechanical propositions depends, we find out, on judg-
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ing their special assumptions concerning infinite summations, by a comparison to

Lemma 11.

The place of the Indivisibles Proof inside the sequence of propositions 12–15 is

another question opened up by the new reading. To recall: the sequence is made of

a mechanical proof (props. 12–13), an Indivisibles Proof, which we have read, and

a geometrical proof, especially fragmentary in the Palimpsest (prop. 15). It was al-

ways assumed that Archimedes cited Lemma 11 so as to use it in Proposition 15, the

geometrical one. This proposition goes through a construction similar to that of the

Indivisibles Proof, dividing the prism not into triangles, but into prismatic slices, as

thin as required for the application of the method of exhaustion.22 (This is exactly

analogous to the standard practice elsewhere in Archimedes, in particular in Conoids

and Spheroids itself, from which Lemma 11 is taken.) The application of Lemma 11

would then obtain for finite sets of prisms and rectangles, rather than for infinite sets

of triangles and lines. We now see that the Indivisibles Proof and the geometrical

proof are very similar indeed. On the other hand, one notes the deep gap between

these two, on the one hand, and the mechanical proof, on the other. That ingenious

and very complicated mechanical proof works through an altogether different route.

It first balances the cylindrical segment with another, geometrically distinct cylin-

drical sector, and then balances and measures that other sector.23 In other words,

the geometrical proof is nothing but an upgrade of the Indivisibles Proof using the

method of exhaustion, while both differ sharply from the considerably more compli-

cated mechanical proof. It seems that Archimedes could have chosen no worse set

of examples, then, for the alleged “heuristic” value of the mechanical method. The

sequence of propositions 12–15 suggests, if anything, that Archimedes first thought

of the Indivisibles Proof, then transformed it, straightforwardly, into a geometrical

proof, finally, and independently, came up with a mechanical proof. Propositions

12–13 lend credence to the intuition Archimedes expresses in the introduction to the

Method : it is through knowing the result that one can find a proof. In this case,

however, it seems impossible to find the mechanical proof without first knowing

what it should prove! This, then, requires a rethinking of the nature of “heuristics”

in the Method.

It must be stressed at this point that our answers to such questions as raised

above still face the fragmentary state of the Method. In particular, the Indivisibles

Proof starts immediately following a missing leaf, discarded already in the twelfth

or thirteenth century when the manuscript was palimpsested. We have only the

beginning of the mechanical proof. It is possible that, in that missing leaf, following

the conclusion of the mechanical proof, Archimedes offered some general observa-

tions. Obviously, whether such observations existed or not, and then what they

22For the method of exhaustion in general, see Dijksterhuis [1987] 130–133.

23Knorr [1996] provides a clear exposition of this mechanical proof.
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might possibly have been, are all questions of great bearing on the interpretation

of the Method. Realizing how much we have been in ignorance merely by failing to

read Steps 19–23 of the Indivisibles Proof, we feel humble before the lacuna of a full

bifolium.

We are similarly humbled before the final lacuna of the Method. As mentioned

above, the Palimpsest contains (some of) the discussion for the cylindrical segment,

but none of the discussion for another, equally remarkable object: the figure resulting

from the intersection of two cylinders within a cube. Several authors have tried in

the past to reconstruct Archimedes’ arguments for this intersection.24 We shall not

attempt such a reconstruction ourselves, and merely note that Archimedes could

have offered any combination of mechanical, indivisibles, geometrical or indeed other

kinds of proofs. The puzzle of the Method, then, was many-dimensional: the puzzle

of the mechnical proofs on their own; the puzzle of the Indivisbles Proof(s?) on its

own; the puzzle of the internal relationship inside the sequence of Propositions 12–

15; the puzzle of the internal relationship inside the final (lost) sequence; finally, the

puzzle of the global relationship between all parts. The more we read of the Method,

the more we come to glimpse the intricacy of this many-dimensional structure. One

thing the Method does not possess is, so to speak, mechanical repetition. Variation,

rather than repetition, seems to be the dominant theme.

The difficulties of interpreting such a structure are evident, and are obviously

compounded by its fragmentary state. Possibly, these difficulties may have been

intentional. Whatever else the Method was, it was also a letter sent to Eratosthenes.

It is in keeping with Archimedes’ character, and with the character of his times,

to have sent a puzzling, tantalizing text, meant as a challenge. “Find the logical

structure of the Method” is the implicit task it sets — deliberately, we suggest —

as an intricate puzzle: to Eratosthenes and, through him, to us.

We leave aside the puzzle of the Method and point to two general questions, one

mathematical, the other philosophical, that arise from the new reading.

First, it appears that in the one recorded text where Archimedes uses the method

of indivisibles without an appeal to mechanics, he does not use it directly, but

attempts to justify the move to indivisibles through a special, complicated condition

— that of Lemma 11. Of course, it is easy to see how Lemma 11 is brought into

the picture: Archimedes is extending, in an intuitive way, an application of Lemma

11 which unproblematically applies to the finite case of Proposition 15. All the

Indivisibles Proof does, then, is to move — intuitively — from the indefinitely many

of Proposition 15 to the infinitely many of the Indivisibles Proof. Still, it is clear

also that Archimedes does not think indivisibles, as it were, do the job on their

own. At the very least, he must have thought that proportion theory statements,

when applied in infinite cases, ought to be grounded in specific proportion theory

24See in particular Heiberg-Zeuthen [1907], Reinach [1907], Rufini [1926], Sato [1986].
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conditions: one can not simply move one dimension up and trust that the proportions

still hold. In a way, then, we see Archimedes in a different light from that in which

the twentieth century tended to see him. He was not a mere heuristic precursor

of the calculus. Rather — comparable to the more perceptive authors of the pre-

calculus — he was interested simultaneously in obtaining results, and, at least to

some extent, in obtaining them rigorously. It is an open question, now, how well he

had chosen his conditions for rigour. What is already clear is that this new reading

ought to affect our overall interpretation of the pre-history of the calculus.

The specific way in which Archimedes seeks this rigour is especially remarkable,

and gives rise to the second general question, more philosophical in character. We

refer to Steps 21-23. In these steps, Archimedes takes three pairs of magnitudes

infinite in number and asserts that they are, respectively, “equal in multitude”:

Step 21: The lllrect are “equal in multitude” to the △pr

Step 22: The △cyl are “equal in multitude” to the △pr

Step 23: The lllsegm are “equal in multitude” to the lllrect

We suspect there may be no other known places in Greek mathematics — or,

indeed, in ancient Greek writing — where objects infinite in number are said to

be “equal in multitude.” Greek authors are usually taken to be extra-cautious

about infinity, using the potential infinity of the indefinitely many to deal with such

problems that, in other intellectual traditions, are studied through actual infinities.

Here actual infinities are manipulated in specific ways, suggesting a degree of comfort

which is quite surprising.

Two features in particular are striking:

• The very suggestion that certain objects, infinite in number, are “equal in

multitude” to others implies that not all such objects, infinite in number, are

so equal.

• All three pairs are transparently related through a geometrical pairing: the

lines in the rectangle are each a base for a separate triangle in the prism; the

triangles in the cylindrical segment are each contained by a separate triangle in

the prism; the lines in the parabolic segment are, each, contained by a separate

line in the rectangle. One is led to believe that, for Archimedes, “equality in

multitude” for magnitudes infinite in number could be related to some sort of

one-to-one correspondence arguments.

We have here infinitely many objects - having definite, and different multitudes

(i.e., they nearly have number); such multitudes are manipulated in a concrete

way, apparently by something rather like a one-to-one correspondence. Now, our

understanding of the Greek treatment of infinity is largely shaped by the influence of
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Aristotle, and we are often impressed by his great care to avoid actual infinities. As

ever, we find that one should not generalize across all ancient authors, and that, at

least in this case, Archimedes discusses actual infinities almost as if they possessed

numbers in the usual sense — which of course calls for further study of the infinite

in Archimedes, and in Greek thought.

To sum up, then, the new reading from Archimedes’ “Indivisibles” Proof does not

so much solve the puzzle of the Method, as add to its complexity. We believe that

the new reading totally alters the logical structure of the Indivisibles Proof itself and

that, as a consequence, the overall structure of the Method has to be reconsidered.

Finally, this should call for some reconsideration of the position of Archimedes in

some key areas of the history of mathematics, especially the two related conceptual

fields of the calculus, and of infinity.

Appendix : New text of Method Proposition 14,
110v–105r

The following text, that of the verso side of the Archimedes leaf 105–110, starts

at the middle of Step 14, and breaks at the very beginning of Step 31 (see the

translation above, especially note 6). It thus encompasses almost all of the main

part of the argument, Steps 14–29.

Standard conventions are used in the transcription, roughly following a ‘papyro-

logical’ model. Note that, to avoid clutter, the critical apparatus does not note as

variants the places where the new edition conflicts with Heiberg’s.

We add breathings, accents and punctuation (all rare in the manuscript). We

print Iota Adscriptum following the manuscript, rather than modern conventions,

since our readings sometimes depend upon such characters.

H498,2 EH, (íti) êstai ±j tä trÐgwnon tä ge 110v. col. 1

nìmenon ân tÀ prÐsmati ( .p.r .ä.j) tä

⟨t⟩r⟨Ðgwnon ân tÀ �⟩ .p⟨o⟩tm ma(ti)
.t .ä .â.n .t .À .� .p .ä .t .o .Ü .k .u .l.Ð .ndrou (oÕtwj)

⟨� �⟩ .x.qeØsa ⟨ân⟩ .t .À.i ⟨D⟩ .H parallh 5

⟨log⟩ .r .� .m .m .w .p .ar�llhl .o⟨j⟩ oÞsa .t .̈

.KZ (.p.r .ä.j) ⟨t�n �pol⟩hfqeØsan �pä

t¨j .HZ toÜ ærqogwnÐou k¸nou

tom¨j kaÈ t¨j EH (dia)mètrou. sum

plhrwqèntoj oÞn toÜ DH pa 10

rallhlogr�mmou Ípä tÀn .� .gomè

H498,10 n .w⟨n⟩ par� t�n KZ, kaÈ toÜ tm 

matoj toÜ periexomènou Í⟨pì⟩
.t.e .t¨j toÜ ærqogwnÐou k¸nou t⟨om¨j⟩
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kaÈ t¨j EH (dia)mètrou ⟨Í⟩pä .t⟨Àn �⟩ 15

polambanomènwn ⟨ân tÀ tm ⟩
mati; sumplhrwqènt⟨oj dà kaÈ⟩
toÜ prÐsmatoj Ípä tÀn .t⟨rig¸⟩

7 �pä] Ípä 10 toÜ GE] toÔtou GE?

nwn tÀn genomènwn ⟨ân aÎtÀi⟩, 105r. col. 1

(kaÈ) toÜ tm matoj toÜ �potmh

qèntoj �pä toÜ k. ⟨ulÐndrou; (kaÈ)⟩ .ê .s .t⟨i⟩
tina megè.q⟨h⟩ .Ò .s a �ll⟨ loij, t� trÐ⟩
.gw.n⟨a⟩ t� ân tÀi pr⟨Ðsm⟩a⟨ti⟩, ( .k .a.È) ⟨êsti 5

átè⟩ .r .a .m.e .g.è.q⟨h, aÑ⟩ .e.Ê⟨sin eÎqeØai ân⟩
tÀ DH ⟨parallhlogr�mmw pa⟩
r�llhl⟨oi oÖsai t¨ Z⟩K .Q, ⟨� kaÈ �l⟩
.l . ⟨loij Òsa⟩ .â .s .t.È, ⟨kaÈ pl⟩ . .q.e.i .Ñ .s ⟨a
toØ⟩.j .â.n ⟨t⟩ .À prÐsmati trig¸n⟨oij⟩; 10

.ê .s .t .a.i .d.à ⟨kaÈ átèra trÐgw⟩na ⟨t⟩ .�
⟨ân tÀi tm mati tÀi apo⟩tmhqèn
⟨ti Ò⟩ .s ⟨a⟩ .t .À⟨i pl⟩ . .q⟨ei toØj gen⟩ .o⟨mèn
oij⟩ .â .n ⟨tÀ⟩.i ⟨p⟩ .r⟨Ðsmati tri⟩
.g⟨¸n⟩ .o⟨ij⟩; .k .a.È ⟨aÉ átèrai eÎqeØai 15

�⟩ .p .o .l .a .m⟨ba⟩ .n⟨ìmenai �po tÀn⟩

8 ZKQ] ZKB?

�gomènwn .p( .a.r .�) t�n K⟨Z meta⟩ .c⟨Ì⟩ 110v. col. 2

t¨j ⟨toÜ ærqo⟩gwn⟨Ðou k¸⟩nou
tom¨j kaÈ t¨j .E⟨H eÊsÈ Òs ⟩ .a⟨i⟩

H498,20 pl¨qei taØj ân tÀi DH ⟨paral⟩
lhlogr�mmwi �gmènaij ⟨(par�)⟩ 5

t�n KZ; kaÈ êstai ±j p�nta t�

trÐgwna t� ân tÀi prÐsmati

präj p�nta t� trÐgwna t�

ân tÀ �potmhqènti tÀi �pä

toÜ kulÐndrou �fhrhmèna 10

oÕtwj p�sai aÉ eÎqeØai aÉ ân

tÀi DH parallhlogr�mmwi ( .p.r .ä.j)

p�saj t�j eÎqeÐaj t�j meta

cÌ t¨j toÜ ærqogwnÐou k¸nou

tom¨j kaÈ t¨j ⟨EH⟩ eÎqeÐaj. (kaÈ) 15
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âk màn tÀn ân tÀi prÐsmati tri

g¸nwn sÔgkeitai tä prÐsma, âk

dà tÀn ân tÀi �potm mati tÀi

⟨�potmhqènti �pä toÜ kulÐndrou tä �pìtmh⟩

6 ±j] om.

ma, âk dà tÀn ⟨eÎqeÐwn⟩ .t .À.n .â.n 105r. col. 2

tÀi DH parallhlogr�mmwi p

H498,30 ar� t�n KZ tä DH parallh

lìgrammon, âk dà tÀn ⟨eÎq⟩.e.Ð .w.n

metacÌ t¨j toÜ ærqogwnÐou ⟨k¸⟩ 5

H499,1 nou tom¨j kaÈ t¨j E⟨H⟩ tä tm¨

⟨ma⟩ .t .̈⟨j pa⟩ .r .a .bo.l⟨¨j⟩; ±j (�ra) .t⟨ä⟩ pr⟨(Ðs )⟩
.m⟨a⟩ ( .p.r .ä.j) tä �pätm¨ma tä �pä (toÜ)

⟨kul⟩Ðndrou oÕtwj tä .D⟨H para⟩ .l
lhlìgrammon ( .p.r .ä.j) tä ⟨E⟩ .Z .H tm¨ma 10

⟨tä peri⟩.e .x .ì .m⟨en⟩ .o.n ⟨Í⟩ .p⟨ä⟩ t¨j toÜ

ærqogwnÐou k¸nou tom¨j kaÈ

t¨j .E⟨H⟩ eÎqeÐaj; ⟨�⟩ .m.i .ì .l⟨io⟩ .n ⟨dà⟩
tä DH .p⟨arallhlì⟩ .g.r .a .m⟨mon⟩ .t .o .Ü

tm ma⟨toj t⟩ .o⟨Ü peri⟩.e .x⟨ìmenou⟩ (oÕtwj) 15

.Í⟨(pä⟩ .t .̈⟨j toÜ⟩ .æ.r⟨qogw⟩ .n⟨Ðou k¸nou

tom¨j kaÈ t⟩ .̈⟨j E⟩ .H ⟨eÎqeÐaj⟩; de&
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