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There are currently no known manuscripts containing the Greek text of Ptolemy’s
Planisphere.1 Nevertheless, there are two medieval translations from which an as-
sessment of the original work can be made. The oldest of these is in Arabic, un-
dertaken by an unknown scholar, presumably as part of the Baghdad translation
movement [Kunitzsch 1993, 97; Kunitzsch 1995, 150–153]. There has never been
any doubt that this was based on a Greek text written by Ptolemy, and those who
are familiar with Ptolemy’s Almagest will notice many similarities of style and struc-
ture between the two texts, despite the different rhetorical tendencies of Greek and
Arabic prose. Moreover, Ptolemy assumes that the reader of the Planisphere has
already read his Almagest, which he refers to in a number of places.

In the 12th century, a loose Latin translation was made by Hermann of Carinthia
on the basis of a different Arabic version than that found in the two known Arabic
manuscripts.2 Hermann’s version was edited by Heiberg [1907, 227–259], translated
into German by Drecker [1927], and has been the source of much of the modern schol-
arship on the text.3 Hermann’s text served as the basis for the early-modern Latin
editions, the most influential of which was by Commandino [1558], who appended a
commentary that includes a study in linear perspective.4

Although Anagnostakis [1984] produced an English translation and study of one
of the Arabic manuscripts as part of his dissertation, the text has never been formally

1The 10th-century Suidas gives the Greek title as the VAplwsic âpifaneÐac sfaÐrac, Simplification of

the Sphere [Adler 1928–1938, 254]. Kaufmann corrected the fist word to âxĹplwsic, which he took

as “unfolding” [Pauly-Wissowa 1894–1980, vol. 2, 1801], and Neugebauer [1975, 870–871] accepted

this correction. It is possible to read either of these words as “unfolding” or “spreading out.”

2An earlier Latin translation survives only in fragments [Kunitzsch 1993]. There is too little of this

text to be able to say much about the Arabic source.

3There is also a medieval Hebrew translation, but this appears to have been based on the Latin

[Lorch 1995, 276, n. 11].

4Commandino’s text, as well as two earlier modern editions, was reprinted by Sinisgalli and Vastola

[1992], who also provided an Italian translation. Commandino’s commentary is reprinted, with an

Italian translation, by Sinisgalli [1993].



38 Sidoli and Berggren SCIAMVS 8

edited. The present study supplies a critical edition of the extant Arabic text, along
with our translation and commentary. The commentary provides a new reading of
the text that encompasses the entire treatise and integrates it into its context as a
work in the Greek mathematical tradition.

There have been relatively few historical studies of the Planisphere as a whole.
Probably, the most useful summary of the mathematics underlying Ptolemy’s ap-
proach is by Neugebauer [1975, 857–868], who read the text as principally concerned
with the construction of astrolabes [Neugebauer 1949, 247–248]. The commentary
of Sinisgalli and Vastola [1992] is likewise useful for understanding the text in terms
of modern mathematical methods and projective geometry. In neither case, how-
ever, is there much attempt to understand Ptolemy’s project in terms of ancient
mathematical methods. Moreover, both of these studies are based on the Latin
text. Anagnostakis [1984], in his study of the Arabic text, gave a commentary to
the whole treatise, but did not attempt to situate the overall approach and goals of
the treatise in the context of ancient mathematical methods. These last issues have
been addressed in papers by Berggren [1991], who sought to understand Ptolemy’s
aim in the Planisphere by comparison with his Geography, and Lorch [1995], who
compared Ptolemy’s methods with those of a medieval commentator. Our reading
makes use of these studies; however, we make some key differences of interpretation,
which are discussed in the commentary. Moreover, ours is the first reading based on
a critical edition of the oldest extant version of the text.

The Planisphere is the first known treatise that develops a plane diagram of the
celestial sphere using methods mathematically related to stereographic projection.
Although Ptolemy wrote the text, the methods contained in it probably go back at
least as far as Hipparchus [Neugebauer 1975, 868–869]. Moreover, the text appears to
have been written for the advanced student, or expert, in mathematical astronomy.
For these reasons, the Planisphere should be of great interest to historians of the
ancient and medieval exact sciences. By studying this text, we may learn what
sort of knowledge could be assumed on the part of a mathematically competent
reader in the 2nd century, and probably for a number of centuries before this time.
In this way, historians of astronomy can produce a more detailed picture of the
mathematical methods of ancient astronomers, and historians of mathematics can
develop a broader understanding of the range and methods of Greek mathematics.

The kinds of mathematical thought preserved in the Planisphere are especially
important if we are interested in those cultures that inherited the Greek mathemati-
cal tradition. The Greek conception of the celestial sphere, in both its geometric and
arithmetic articulations, was of great interest during the medieval period to scholars
working in Sanskrit, Pahlavi, Arabic, Hebrew and Latin. Although many modern
historians have a tendency to draw disciplinary divisions between astronomy and
mathematics, such distinctions would hardly have been evident to ancient and me-
dieval scholars. In particular, there would have been little of the institutional and
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professional segregation that we now take so much for granted. The different ways
of categorizing and arranging the mathematical sciences were nearly as numerous as
the practitioners, but mathematical studies of the celestial sphere were always seen
as an important branch of the exact sciences. In the medieval and early modern
periods, the projection of the sphere onto the plane became a fruitful area of new
research and Ptolemy’s text was understood as fundamental to the field. It is our
hope that this study will bring new understanding to the endeavors of the ancient
and medieval scholars who investigated the fundamental mathematical structures of
their cosmos.

I Editorial Procedures

We have prepared the text on the basis of images of the only two manuscripts
presently known and available.

I: Istanbul, Aya Sofya 2671
T: Tehran, Khān Malik Sāsān̄ı

Anagnostakis [1984, 226–267] printed the first of these in facsimile, while the
second is described in detail by Kunitzsch [1994a], who collated the two and listed
what he considered to be the superior readings of T. A third ms is listed by Beaure-
cueil [1956, 19] as having belonged to the Maktabat Ri↩āsat al-Mat.bū↪āt in Kabul;
however, this library has not survived the recent wars.

Our apparatus refers to three other sources which are not mss but which have
been useful in establishing the text.

Mas: Maslama’s notes
Her: Hermann’s Latin translation
Ana: Anagnostakis’s English translation

The 10th-century Andalusian astronomer Abū al-Qāsim Maslama ibn Ah.mad
al-Farad. ı̄ al-Majr̄ıt.̄ı studied the treatise and produced a series of notes and supple-
mentary material of use for the construction of astrolabes [Vernet and Catalá 1965,
1998; Kunitzsch and Lorch 1994]. As well as being useful for understanding the
mathematics of the treatise, Maslama’s notes contain sixteen citations, all but one
of which can be usefully compared to the text contained in TI. There are, however,
differences between the text Maslama quotes and that preserved in TI. These are
usually minor, but in places they are enough to show that the two versions could
not be edited so as to produce a single text (for examples, see lines 423, 481, 498,
Mas107).
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Hermann’s Latin translation was made on the basis of some version of Maslama’s
edition and included Maslama’s notes and additional material [Kunitzsch and Lorch
1994, 34–71]. We have used this text to justify a number of corrections to the
Arabic, especially in the numbers. The superior readings found in Hermann’s text
are probably corrections introduced by Maslama, or less likely Hermann, as opposed
to evidence for a more pristine text. Nevertheless, they represent medieval readings
without which the text would, in a number of cases, make no mathematical or
astronomical sense. It would also be possible to correct many of the letter names of
geometric objects on the basis of Hermann’s text, but since he often uses different
lettering, and sometimes a slightly different figure, this would be more trouble than
it could be worth.

There are numerous errors in the letter names of geometric objects. In the early
part of the treatise, a more recent hand has corrected many of these in T. Moreover,
in his translation, Anagnostakis [1984, 99–101] introduces many corrections, most
of which concern the letter names. Where we follow these corrections, they are
attributed to one or both of these sources.

I.1 Orthography

In the edited text, we have attempted to follow the orthography of the manuscripts,
so that where TI agree on a particular form, we follow that even when it differs
from modern conventions.5 For example, since they both write �IÊ�K for �HC�K, we
have printed the former. Where they disagree, however, we follow modern practice.
For example, since I has ùë whereas T usually has ù
 ë, we print ù
 ë. On the other

hand, since they also disagree, for example, on øYg@ and ø
 Yg@, we print øYg@.
Because I is more liberal in the use of diacritical marks, we have allowed ourselves

to be guided by it and sometimes include a shadda, tanwin and short vowel signs.
Often we directly follow I in this, but at times we silently insert them with no
manuscript authority in the interest of clarity. We also neglect such marks in I where
they are unnecessary. For example, I often includes the shadda of the assimilated
sun letters.

There is relatively little use of hamza in the manuscripts. I sometimes includes
an initial hamza for clarity, or seemingly at random, but neither ms makes use of
the medial or final hamza. Thus in both mss, we find 	Qk. for Z 	Qk. or ú
æ

�� for Zú
æ
��, and

so they are printed in the text. Nevertheless, in a few words, we include a medial or
final hamza in order to differentiate them from similar words or make explicit their
grammatical form. The reader should understand that these are not found in the
manuscripts. As is common in medieval mss, when the vowel is kasra, the seat of
the absent hamza is the dotted ø
 . Thus, we find �èQK
 @X for �èQK @X, Õç'
A�̄ for Õç'A�̄, and so

5Outside of the context of the text, however, we use modern orthography.
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in every case.

I.2 Correcting the Text

In the interest of mathematical and astronomical intelligibility, we have often found
it necessary to correct the text. Nevertheless, we have attempted to balance this need
with a desire to stay true to the evidence of the manuscripts. Although there are
places were we have changed a grammatical form, inserted or deleted material that
seems requisite, our tendency has been to follow a policy of minimal intervention.

We do not know who produced the original translation, so we cannot compare
the style of this treatise with others by the same author. Passages that may strike
us as strange could simply be due to idiosyncratic features of the translator’s prose
style. The translator may himself have faced obstacles in understanding his sources.
He was, no doubt, working with a very limited number of Greek manuscripts, which
would themselves have presented numerous difficulties. Hence, where we can make
some possible sense of the manuscript idiom no matter how strained or unnatural it
may appear to us, we have let the text stand. For example, the beginning of lines
122–125 makes little sense, but is grammatically coherent. Instead of rewriting the
passage, we have preserved the text as it is and translated freely. In any case, all
changes from the manuscript sources are noted in the apparatus.

As discussed above, the corrections that we have most consistently introduced are
in the numbers and the letter names of geometric objects. It is clear that these are
highly susceptible to the inaccuracies of manuscript transmission, and we have felt
little hesitation in correcting them or following the corrections of previous readers.
Nevertheless, in the case of the numbers we have always justified our corrections on
the basis of other occurrences of the same value in the text, other medieval sources or
simple arithmetical operations implied by the text. There is, however, one number
that is clearly incorrect but which we have not changed. The number 25; 30p at
line 224 is certainly wrong; however, the value in Hermann’s translation (≈ 55; 59p)
does not agree exactly with that derived by computation (56; 1, 17p).6 Moreover, it
is not possible to assume that the stated value for the arc subtending this length
(55; 40◦) was precisely calculated from the chord table, since recomputing with the
chord table often shows minor discrepancies with the numbers in the text. Hence,
we cannot know exactly what value was found in the original translation, much less
in the Greek.

As mentioned above, there are a few places where we have added or deleted some
words in the interest of clarity. Although there are some cases where it is clear
that changes were introduced in the process of transmission, we must bear in mind
that the medieval scribes were not in the habit of introducing deliberate changes to
the texts [Dallal 1999, 66]. Moreover, they were fairly careful to transmit the text

6See page 93, note 83.
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accurately as it was written, so that we must admit the possibility that some of the
obscure passages are faithful reproductions of the original translation.7

An example of such ambiguity is found in lines 206–215. In this treatise, a square
is expressed as “the square of some line times itself” ( éÊ�JÓ ú


	̄ AÓ ¡ 	k ©K. QÓ), where the

expression for the line can be a letter name, a few words, or an extended phrase.8 In
lines 206–215, the Pythagorean Theorem (Elem. I 47) is twice asserted for the squares
of specific objects in the diagram and the expressions for the squared lines become
somewhat involved. The result is that in three of five cases the actual expression for
the square ( éÊ�JÓ ú


	̄ . . . ©K. QÓ) has dropped out (in the other case, the square is stated

as a number). Since some reference to the squares is mathematically required,
we have no satisfying alternative. Either the original translator assumed that it
would be obvious to the reader that the squares were intended and deliberately
omitted the actual phrases asserting this, or at some point in the transmission
a copyist intensionally or accidentally dropped nine words in six different places.
These alternatives are problematic because the full expression for the square occurs
not only in the first instance but also in the third, while it is hard to imagine a
conscientious scribe introducing systematic errors of this kind. There are, of course,
other possibilities – the original translator may have gotten sloppy at this point,
the text may have been garbled in the transmission and corrected by a scribe who
did not fully understand the mathematics, the Greek source(s) may already have
contained errors, and so forth. In the edited text, we have added the expression for
the squares in brackets, mindful of the fact that this may not represent any medieval
version of the Arabic.

I.3 Editing the Diagrams

Although the copyist of I left empty boxes in the text where the diagrams should
appear, no figures were ever drawn. Hence, T is our only evidence for the diagrams
of this version of the Arabic text. In some sense, this has made the task of editing
the figures easier. Nevertheless, since there are errors in the diagrams, we have
chosen not to reproduce them exactly in our edition of the text, but to strike a
balance between this and redrawing them to suit the mathematical requirements of
the material they accompany, noting all differences between our reproduced figures
and the originals. Moreover, since the text is provided with a translation, we have
redrawn figures for this that we consider to be fully consistent with the mathematics
involved. Hence, readers of the Arabic text may find it useful to consult the diagrams
for the translation as well as those for the text.

7For example, the scribe of T checked his work, added a number of missing words and phrases in

the margins and included a brief note near the colophon stating that the copy was true.

8See page 46 for a discussion of this idiom.
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The diagrams accompanying the text preserve the internal and relative scale,
orientation, shape, and label positioning of the originals.9 Features such as color,
relative line weight and letter shape are not preserved. Since we have reproduced
the shape of the lines and circles quite closely, it should be possible for the reader
to see at a glance which lines have been drawn with a guide and which by freehand.
It should be noted, however, that some of the circles are not true, although they
all appear to have been drawn with an instrument. The curvature of the circles is
reproduced accurately in our figures. Wherever our reproduction departs from the
ms, it is so noted in the apparatus.

II Translation Procedures

The exposition in this treatise is often not as clear as one would like. Having
been translated from Ptolemy’s highly structured Greek into Arabic, a language not
perfectly suited to the kind of sentence that Ptolemy liked to write, there are a
number of passages that readers may find obscure.

In an attempt to mitigate these difficulties, we have not tried to maintain literal
faithfulness to the wording of the technical terminology, but to its meaning. Nev-
ertheless, since those who do not read Arabic may also be interested in the literal
expressions, we provide a discussion of these phrases.10 This section also serves as
a partial index to the technical terminology. Hence, we list the line numbers where
the stated terms are found. We do not, however, list line numbers for words and
phrases that occur numerous times or that we translate consistently throughout.

Astronomical and Geographic Terms

The expression for the equator is “the circle of the equalizer of the day”
(PAî 	DË @ ÈYªÓ �èQK @X), or less often, with ellipsis, “the equalizer of the day” (PAî 	DË @ ÈYªÓ,
18, 30, 46, 133, 157, 425). We translate both expressions with equator.

The phrase translated as meridian, “the circle of midday” (PAî 	DË @ 	�	� �èQK @X) is
also quite consistent. Ptolemy uses the term meridian to refer to any great circle
through the celestial poles, so that it is generally independent of any local coordi-
nates. The meridians through the equinoctial and the solstitial points respectively,
known as the equinoctial and solstitial colures, sometimes play a significant geo-
metric role in the treatise. Where their status as colures is of little importance
these are simply called, and translated as, meridians (14, 404, 503). In the one case
where the equinoctial colure is used as such it is again called, and translated as,

9We are grateful to Ken Saito for giving us computer programs designed by himself and Paulo

Mascellani that are useful for reproducing ms diagrams.

10The terminology in this section should be compared with the list provided by Kunitzsch [1994b]

for the Arabic versions of the Almagest.
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the meridian (449). The solstitial colure, on the other hand, is called “the merid-
ian that goes through the two poles” ( 	á�
J.¢�®ËAK. QÖ �ß ú


�æË @ PAî 	DË @ 	�	� �èQK @X, 440, 461),

and “the circle that goes through the two poles” ( 	á�
J.¢�®ËAK. QÖ �ß ú

�æË@ �èQK @YË@, 485, 514).

In one case it is referred to, in the plane, as “the straight line that goes through
both two poles” ( A �ªJ
Ôg. 	á�
J.¢�®ËAK. QÖß
 ø


	YË@ Õæ

�®�J�ÖÏ @ ¡	mÌ'@, 429). We have translated these

expressions fairly literally.
For the ecliptic, on the other hand, there is more variety. In the beginning of the

treatise, we generally encounter “the circle of the inclined sphere” (ÉKAÖÏ @ ½Ê 	®Ë @ �èQK @X,
6, 24, 43, 49, 51, 72, 93, 183), but this gradually gives way to “the circle of the
sphere of the signs” (h. ðQ�. Ë @ ½Ê 	̄ �èQK @X, 47, 52, 77, 80, 83, 87, 89, 90, 126, 129, 167,

240, 323), which in turn gives way to the simplified “circle of the signs” (h. ðQ�. Ë @ �èQK @X,
177, 279, 311, 429, 436, 439, 442, 449, 459, 462, 465*, 466*, 483, 488, 496, 498,
515).11 We render these three expressions as the ecliptic. The most common
phrase, however, is “the circle that goes in (or through) the middle of the signs”
(h. ðQ�. Ë @ ¡�ñ(K. ð@) ú


	̄ QÖ �ß ú

�æË @ �èQK @YË@, 39, 54, 74, 134, 147, 174, 180, 186, 199, 288,

306, 339(2), 399, 424, 431, 432, 434, 508, 510, 519, 523). This we have translated as
the circle through the signs.

The horizon is called either “the circle of the horizon” ( �� 	̄ B@ �èQK
 @X, 51, 73, 78, 80,
82, 88, 89, 90, 169, 281, 289, 293, 319, 321, 342, 343, 350) or simply “the horizon”
( �� 	̄ B@, 157(2), 166, 180, 274(2), 277, 283, 318). In some cases, the former expres-
sion clearly denotes the mathematical object that represents the horizon on either
the sphere or planisphere while the later means the local horizon. In other cases,
however, the situation is ambiguous or the distinction is not clearly maintained.
Nevertheless, since such a distinction may have been intended, we have translated
the former expression as the horizon circle and the later simply as the horizon.

The two most important classes of lesser circles, and the only ones of any relevance
for the project of this treatise, are the circles parallel to the equator and the ecliptic,
now generally called the parallels of declination and latitude. Because these circles
come up so often, it will be useful to refer to them as δ-circles and β-circles, since
they are sets of points of equal declination, δ, and celestial latitude, β, respectively.
The δ-circles are called “the circles parallel to the equator” with a number of trivial
grammatical variants (PAî 	DË @ ÈYªÓ �èQK @YË �éK
 	P@ñÖÏ @ QK @ðYË@, 7, 10, 11, 18, 19, 30, 46, 58,
70, 98, 133, 146, 157, 202, 246, 274, 348, 370, 405, 410, 415, 445, 448, 487, 507, 509,
517, 523). The β-circles are called “the circles parallel to the ecliptic,” again with
variants (h. ðQ�. Ë @ �èQK @YË �éK
 	P@ñÖÏ @ QK @ðYË@, 439, 441, 448, 459, 462, 466, 483, 487, 496, 498,
512, 514). We have translated these various expressions rather closely.

The four cardinal points of the ecliptic are defined either by the intersections

11Line numbers followed by an asterisk indicate instances in the edited text, but not in the

manuscripts. Line numbers followed by an e indicate that the expression has undergone ellipsis.
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of the ecliptic with the equator or by its points of tangency with the two equal
δ-circles known as the Tropics of Cancer and Capricorn. The expression that we
translate as the tropics is “the two circles of the place of turning” ( 	á�
J. Ê �® 	JÖÏ @ A�KQK @X,
36, 40, 114, 166, 528, 528), which are sometimes specified as “the circle of the
summer (or winter) place of turning” ((ø
 ñ�J ��Ë@ ð@) ù


	®J
�Ë@ I. Ê�® 	JÖÏ @ �èQK @X 38(2), 40(e),

41, 123, 124). We translate these as the summer or winter tropic. The solstitial
points are called “the two points of the places of turning” ( 	á�
J. Ê �® 	JÖÏ @ ú


�æ¢�® 	K 134, 147,

178, 282), and the summer solstice is “the point of the summer place of turning”
(ù


	®J
�Ë@ I. Ê�® 	JÖÏ @ �é¢�® 	K, 310). The equinoctial points, on the other hand, are called “the

two points of equality” (Z @ñ�J�B@ ú

�æ¢�® 	K, 176, 233, 264), and once “the two points of

evenness” (È@Y�J«B@ ú

�æ¢�® 	K, 307). These are also occasionally specified as “the point

of the spring (or fall)” (( 	K
Q	mÌ'@ ð@) ©J
K. QË @ �é¢�® 	K, 42(2), 311, 333, 334). We translate
these as the vernal or autumnal point.

The subject of rising-times of arcs of the ecliptic, which in the Almagest is usually
discussed with some form of the verb “to rise” (Ćnafèrein, sunanafèrein), is handled
in this treatise by “ascensions” (©ËA¢Ó). Because the rising-times of arcs of the ecliptic
are measured by the arcs of the equator that rise with them, which are converted to
times by the identity 1◦ = 4 minutes, the word mat.āli ↪ can denote either the time
or the co-ascendant arc. Hence, there is some ambiguity in the text and it would be
possible to translate some occurrences of the term as “co-ascension.”12 Nevertheless,
we have preserved the ambiguity and always translated with rising-times.

In Ptolemy’s studies of rising-times, the fundamental case, by which all other
cases are measured, is the situation known as sphaera recta, in which the observer
is on the equator. This is referred to numerous times as “the upright sphere”
( �éÒJ
�®�J�ÖÏ @ �èQºË@). This situation is contrasted with that known as sphaera obliqua,
in which the observer is at any other latitude. The latter case is referred to only
once, as “the inclined sphere” ( �éÊKAÖÏ @ �èQºË@, 270). These two expressions are trans-
lated literally.

A geographic latitude is specified by the Arabic transliteration of the Greek “in-
clination” (Õæ
Ê

�̄ @, klÐma, 157, 315, 322, 338), which means a geographic region at
roughly the same latitude. In both Greek and Arabic, however, this can carry the
technical meaning of latitude and we have translated it as such.13

12For example, see lines 308–314 and page 97. Nas.̄ır al-Dı̄n al-T. ūs̄ı, in his Memoir on Astronomy,

defines ©ËA¢Ó as a “co-ascension” [Ragep 1993, 282].

13Ptolemy generally uses klÐma in this way in the Almagest [Toomer 1984, 42, n. 32], and also once

in his Geography [Berggren and Jones 2000, 111].
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Mathematical Terms

The distinction in Greek mathematical texts between a radius as geometric object
and as the interval with which a circle is constructed appears to be preserved in
the Arabic [Fowler and Taisbak 1999; Sidoli 2004]. The former, “the [line] from the
center” (Ź âk toÜ kèntrou), is translated with “half of the diameter” (Q¢�®Ë@ 	�	�, 92,
93, 122, 123, 127, 128(2), 168, 184, 199(2), 202, 207, 208, 212, 214, 246, 248, 275,
276, 348, 370) while the latter, the “interval” (diĹsthma), is rendered as “distance”
(YªK. , 22(2), 33, 46, 99, 100, 274(2), 413(2), 418, 447, 450, 491). We translate the
former as radius and the later as distance.

The Arabic, on the other hand, makes a linguistic distinction between an arc and
a circumference, which Ptolemy would not have done in Greek. We have translated
�ñ�̄ with arc and “the bounding line” (¡J
jÖÏ @ ¡	mÌ'@, 453, 455, 458) as circumference.

The Greek phrase “the [square] upon the [line] AB” (tä Ćpä tĺc AB) has been
rendered in Arabic as “the square of AB [multiplied] by itself” ( éÊ�JÓ ú


	̄ 'H. '@ ©K. QÓ,
205(2), 207, 208*, 208, 212*, 213*, 351(2), 456),14 or more often simply “AB times
itself” ( éÊ�JÓ ú


	̄ 'H. '@, 63, 64, 211, 212, 457, 471, 472(2), 473, 475, 476, 477(2), 478(2)).

Although the Arabic expression stresses an arithmetic operation which is not stated
in the Greek, it is clear that Ptolemy fully intended his readers to understand the
Greek expression as both a geometric object and an arithmetic operation. Hence,
we have not hesitated to translate such phrases with AB squared, or the square of
AB.

We have translated a number of descriptive phrases with modern techni-
cal terms. Thus, where the Arabic has “what remains from the semicircle”
( �èQK @YË@ 	�	� 	áÓ ù


�®K. AÓ, 106, 109, 116), we translate with the supplement. In this

text, “the remaining angle” ( �éJ
�̄ AJ. Ë @ �éK
ð@ 	QË @, 193, 300) means the complementary an-
gle and is translated as such. Likewise, “the opposite angle” ( �éÊK. A �®ÖÏ @ �éK
ð@ 	QË @, 194)
is translated as the vertical angle. The hypotenuse is expressed as “the (line) that
subtends the right (angle)” with ellipsis in two cases ( �éÖ ßA �®Ë @ �éK
ð@ 	QË @ Q�KñK
 ø


	YË@ ¡	mÌ'@,
211(e), 223, 255, 325, 356(e), 375).

The expression for the chord of an arc is a fairly literal translation of
the usual Greek idiom for chord, “the straight line that subtends arc AB”
(H. '@ �ñ�̄ Q�KñK
 ø


	YË@ Õæ

�®�J�ÖÏ @ ¡	mÌ'@, 109(2), 117, 119, 135, 137, 148, 150, 159, 160).

Despite the fact that in other Arabic texts there is a single word for chord, Q�Kð, we
have translated all variations of the longer expression with some form of the chord
of arc AB.

14The Arabic preposition ú

	̄
, used to indicate multiplication commonly means “in.” Like all prepo-

sitions, however, it has a range of meanings many of which are context specific. In the context of

multiplication, we translate it with by.
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Equality, and related concepts, are handled in a number of different ways in the
treatise. The vast majority of cases are handled with grammatical variations on the
root ø
 ñ�. Most often, one object is said to be equal to another object using ð� A�Ó and

the preposition È (27(2), 66, 67(2), 101, 104, 106, 193, 194, 196, 211, 236, 291, 292,
293, 298, 299(2), 300, 301, 304, 306, 310, 312, 393*, 394, 412, 413, 420(2), 421(3),
422, 431, 454(2), 456(2), 457(2), 468, 469(2), 474, 475, 481, 494). Less often, two
or more objects are said to be mutually equal using ð� A���Ó (always in the feminine
�éK
ðA���Ó, 44(2), 59, 97, 186, 302, 303, 307, 515). There is also one case in which
the congruence of two triangles is asserted by stating that they are “equisided and
equiangular” ( AK
 @ð 	QË @ð ¨C 	�B@ ø
 ðA�Ó, 192, see also note 72). Finally, a property of

two objects is said to be the same using Z @ñ�. This last construction is used six times
to assert the equality of distances (12, 24, 68, 71, 98, 188). We have translated these
expressions fairly literally. Products and squares, or the degree value of angles, are
sometimes asserted as equal by stating that they are “similar” (É�JÓ, 63, 64, 85, 86,
226, 237, 259, 328, 359, 378); however, they are more often said to be “equal” (ð� A�Ó).
In one case, É�JÓ is also used for equal line segments (86). We have translated this
use of É�JÓ as equal. There are two cases, however, where É�JÓ is used in the sense of
“similar” but not equal (411, 450), and we have translated accordingly.

As usual in medieval Arabic texts, a proportion is asserted by stating that the
ratio of A to B is as (¼) the ratio of C to D. This can be contrasted with Greek
texts, where the two ratios are generally said to be “the same” (aÎtìc).

We use numerals, employing the notations for sexagesimal fractions introduced
by Neugebauer and others, whereas the text writes out numbers in longhand.
Thus, where the text reads “one hundred parts and two parts and four minutes
and forty-five seconds” (ú


	G @ñ�K 	á�
ªK. P@ð �Ô 	gð ��KA�̄ X ©K. P@ð 	á�
K 	Qk. ð Z 	Qk. �éKAÓ) we trans-

late with 102; 4, 45p. The other abbreviations we use are x◦ for degrees ( �ék. PX), xt

for time degrees ( 	àAÓ 	P, 1t = 4 minutes) and x◦◦ for half degrees ( �ék. PX, 2◦◦ = 1◦).
Note that x◦◦ is introduced only for convenience, reflecting a mathematical, not
textual, distinction.15

Representing the sphere

The basic project of the treatise is to construct a plane diagram of a sphere, hence
there are many references to “the solid sphere” ( �éÒ�j. ÖÏ @ �èQºË@). The majority of these
are general references to the sphere as a mathematical object (13 times), however,
there are also a number of specific references to the sections of the Almagest in
which Ptolemy uses solid geometry to address the same topics as are covered in this

15Toomer, following B. Goldstein, uses this notation in his translation of the Almagest [Toomer

1984, 8].
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treatise (114, 158, 173, 232, 269, 337, 399). We have translated all of these references
literally.

The Arabic translator has used the verb “to imagine” (Ñëð, V) to translate the
equivalent Greek expression (noeØn), which is used to discuss aspects of the geometric
objects that are not fully depicted in the diagram [Netz 1999, 52–56]. In the first
case, we are asked to imagine that certain straight lines represent meridian circles
(14). In the next case, we imagine that the movement of the sphere is in a certain
direction, whereas in the text the movement of the stars is effected by changing the
position of the horizon, not that of the celestial sphere (280).16 In the final three
cases, we imagine that an object depicted in the plane of the figure is in fact in its
proper place on the solid sphere (441, 486, 498). This is a standard idiom in Greek
mathematical texts for directing the reader’s attention to the solid objects which
are the true subject of discussion and are only adumbrated by the diagram.

Geometric objects in the plane of the diagram are discussed prepositionally as
being “in place of” objects on the sphere ( 	àA¾Ó, 9, 14, 48, 56, 73, 81, 501, 514; ÈYK.
403, 492). That these two prepositions indicate a relationship of representation is
made clear in one place where the planar object is said to “substitute for” the solid
object (ÐA�®Ó Ðñ�®�K, 436). We have translated both of the prepositions as representing
and the second phrase as to stand in for. Because it is often useful to distinguish be-
tween an object on the sphere and the object that stands in for it in the planisphere,
we will introduce a special terminology for this purpose. Hence, we will speak of the
r-ecliptic, r-horizon and r-meridian to refer to the circles and lines that represent
these objects in the plane. It is, however, important to note that although Ptolemy
sometimes distinguishes between an object on the sphere and the plane object that
represents it, he often does not.

An object in the plane that we would call a projection is said to be a “correlate”
of the solid object that it represents (Q�
 	¢ 	�, 23, 49, 53, 57, 182, 432, 512). Proper-
ties that obtain on the sphere are said to obtain “in potential” on the plane ( �èñ�®ËAK. ,
52, 53, 71, 75, 91, 189, 433). The expression bi-l-quwwa often translates the Greek
dunĹmei and occasionally katĂ dÔnamin.17 The former term is used by Ptolemy with
a range of meanings to do with capacity, effect and function.18 The later expression
was used once in the Almagest to mean “in effect” [Heiberg 1898–1903, 275]. What-
ever the original Greek, in this treatise the expression describes the way in which
mathematical relationships between objects exist in the planisphere. For example, a
circle in the planisphere is said to functionally bisect another when the line joining

16This is made explicit in Planis. 10.

17For katĂ dÔnamin, see, for example, Thābit’s translation of Nicomachus’ Introduction to Arithmetic

[Kutsch 1959, 41]

18DunĹmei is also used twice in the Almagest with the specialized mathematical meaning of “equal

in square” [Heiberg 1898–1903, 35]. This usage is clearly not that intended in the present text.
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their intersections passes through the point on the planisphere that represents the
center of the bisected circle, whereas in the plane this line is not actually a diameter
nor the point a center. The Greek term dynamei was used by Aristotle, and many
following him, to mean “potentially,” and Hermann translated �èñ�®ËAK. with potentia
[Heiberg 1907, 230 ff.]. Nevertheless, Ptolemy rarely uses the term in this way, and
certainly it was not so intended in this text. In two cases, objects are asserted to be
functionally correlates (53, 433). It is not clear from the context that there is any
conceptual difference between these correlates and the others.

Since the treatise concerns the construction of a plane diagram of the sphere, one
of its primary goals is to show that this representation is “consistent” with the sphere
( �� 	̄ @ñÓ, 8, 46, 94, 269, 316, 399). The first time this term is used it seems to indicate
a general congruence between the sphere and the planisphere, but in subsequent
usage it becomes clear that the planisphere is said to be consistent when it can be
used to generate the same numerical results as are found using solid geometry.

Non-technical terminology

We have been less systematic in the translation of non-technical idioms. Because
our aim was to render the work into good English while remaining faithful to our
understanding of the meaning of the Arabic text, in many places our translation is
not precisely literal.

The translation of the Arabic dual may be taken as an example of our general
practice. Because Arabic has a dual, Arabic authors naturally, and necessarily, use
it whenever two objects are discussed. English authors, however, only point out that
there are two objects when this is somehow significant. Hence, when the reader can
be assumed to know that we are discussing two objects, we render the dual with the
simple plural. Consistently translating the dual as two adds an emphasis that we
believe was not intended by the Arabic author.

Since in Arabic, as in any other language, most common words have multiple
meanings whose difference significations are not always well expressed by a single
English word, we have used different words to try to convey these different meanings.
For example, both the verb © 	�ð and the noun formed on the same root are used
in related, but different, ways. The verb sometimes means to logically assume and
other times to geometrically set out. The noun sometimes means something more
concrete like place and sometimes something more abstract like situation. We have,
hence, translated these words according to our understanding of the Arabic author’s
intent.

There is one interesting non-technical construction that warrants further com-
ment. The Arabic author often refers to previous passages of this work with the
expression A 	JÓ �Y�®�K Y�̄ followed by

	¬ and another verb, again in the perfect, second-
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person plural (92, 93, 98, 111, 166, 216, 244, 270, 275, 320, 342).19 The second
verb expresses whatever we previously did, such as proved ( A�	J��
K.), set out ( A 	Jª 	�ð),

explained ( A 	Jm� 	�ð

@), and so forth. This construction almost certainly translates the

Greek genitive absolute. Ptolemy was rather fond of the genitive absolute and we
find it used in a number of different ways in his works that survive in Greek. One of
these uses, however, is certainly that conveyed by the above expression. That is, he
uses it to refer to material previously treated in the same work. We always translate
this Arabic expression with some use of the word previously.

Brackets are used as follows. Square brackets, [ ], enclose explanatory additions
not found in the Arabic text but which we believe are necessary to the argument.
Square brackets are also used to enclose text that is not found in the mss but which
we have added to our edition of the Arabic. Parentheses, ( ), are added merely for
clarity and enclose phrases that are found in the Arabic but which may be read as
parenthetical.

III The Structure of the Treatise

The Arabic treatise is presented as undivided, continuous prose and it is unlikely
that the Greek original contained any formal divisions.20 Nevertheless, certain clear
shifts of topic are apparent in both the subject matter and Ptolemy’s exposition.
Accordingly, readers and editors of the text have introduced various divisions. There
have been two significant proposals for dividing the text: (1) that found in Maslama’s
notes and (2) that in Heiberg’s edition of Hermann’s translation.21 Although, in one
case, Maslama’s sectioning is preferable to Heiberg’s, we have followed the latter,
since this is the version of the treatise that is most likely to be compared with the
present text.

In fact, however, neither of these divisions is entirely satisfactory. For exam-
ple, Heiberg separates Planis. 4–7, whereas they obviously belong together, while
Maslama joins Planis. 19 & 20, although they treat quite different subjects. More-
over, they both take Planis. 2 & 3 as separate sections, whereas Planis. 2 is clearly
a lemma to Planis. 3 and it begins with a statement of what is demonstrated in
Planis. 3. In order to help the reader navigate the text, and to provide a more
detailed system of references for our commentary, we propose a new division of the
text, while adhering to Heiberg’s section numbers.

19The Y�̄
is sometimes absent, but the structure of the rest of the expression is always the same.

20Although the medieval full stop, ·©, is found at the end of some sections, it is missing at the end

of others. Furthermore, it is found at the end of sentences that do not conclude sections and there

is generally little agreement between the mss. Indeed, the scribe of I used a mark very similar to

this to fill space at the end of a line, with no stop intended.

21See Kunitzsch and Lorch [1994, 97] for a concordance of the numbering schemes.
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A clear division of subject matter, as well as Ptolemy’s remarks, allows us to
separate the treatise into two parts. The first part introduces the role of the equator
and the r-meridians, the construction of the r-ecliptic, the r-horizons, and the r-
δ-circles, and provides a computational treatment of rising-time phenomena. The
second part introduces the construction of r-β-circles and addresses special topics in
the practical implementation of the planisphere. We group sections together when
they address a single, coherent topic and we treat them in a single section of our
commentary. Finally, some sections contain significant, internal changes of subject.
In order to refer specifically to these subtopics, we introduce subsection numbers.
In the following list, we give the line numbers of the Arabic text for the sections and
subsections. The divisions are also noted in the margins of the translation.

Part I

1.1 (Discussion, 4–8): General introduction to the project of the treatise.
1.2 (Description, 9–22): Description of the basic features of the planisphere, and the

procedure for drawing the circle representing a great circle at a given inclination
to the equator. The claim that such circles bisect the equator.

1.3 (Theorem, 23–29): Proof of this claim, using the r-ecliptic as an example.
1.4 (Description, 30–43): General claim that the planisphere preserves key mathe-

matical features of the sphere. Description of how this works in the case of the
relationship between the ecliptic and the equator.

1.5 (Description, 43–50): Description of how the features of the planisphere are
used to divide the r-ecliptic into quadrants and signs.

2.1 (Discussion, 51–53): Enunciation for Planis. 2 & 3. (Repeated at the beginning
of Planis. 3.)

2.2 (Theorem, 54–72): Lemma for Planis. 3. Proof that an r-meridian intersects
the r-ecliptic at points corresponding to diametrically opposite points on the
sphere.

3 (Theorem, 73–91): Proof that an r-horizon, drawn so as to bisect the equator,
also functionally bisects the r-ecliptic. That is, their intersections correspond
to points that are diametrically opposite on the sphere.

4.1 (Discussion, 92–94): Introduction to the next few sections and generally to
Planis. 4–13.

4.2 (Metrical Analysis, 95–110): Analysis showing that if the absolute declination
of a pair of equal δ-circles is given, the radii of the corresponding r-δ-circles
have given ratios to the radius of the equator.

4.3 (Calculation, 111–131): Calculation of the radii of the r-tropics given the obliq-
uity of the ecliptic, ε, and the radius of the equator. Calculation of the radius
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of the r-ecliptic and the distance of the center of the r-ecliptic from the center
of the equator.

5 (Calculation, 132–143): Calculation of the radii of the r-δ-circles that are 30◦

in celestial longitude from the solstitial points.
6 (Calculation, 144–155): Calculation of the radii of the r-δ-circles that are 60◦

in celestial longitude from the solstitial points.
7 (Calculation, 156–171): Calculation of the radii of the r-δ-circles tangent to the

great circle of the horizon at 36◦ in terrestrial latitude.

8.1 (Description, 172–197): Description of how the features of the planisphere are
applied to rising-time phenomena at the latitude of the equator.

8.2 (Calculation, 198–234): Calculation of the rising-times of the signs about the
equinoxes (Pisces, Aries, Virgo, Libra) at the latitude of the equator. (The
procedure in this calculation will also be used in Planis. 9, 12 & 13.)

8.3 (Metrical Analysis, 235–239): A metrical analysis giving a simpler way to cal-
culate the rising-times of the signs at the latitude of the equator.

9 (Calculation, 240–269): Calculation of the rising-times of the remaining signs
at the latitude of the equator.

10.1 (Description, 270–287): Description of how the features of the planisphere are
applied to rising-time phenomena at the paradigm latitude of Rhodes, 36◦.

10.2 (Theorem, 288–303): Proof that when the solstices are on the horizon, the
r-horizon intersects the equator at points equidistant from the equinoxes.

10.3 (Description, 303–307): Description showing how the geometry of the plani-
sphere makes it clear that the rising-times of equal arcs of the ecliptic about
one and the same equinox are equal.

10.4 (Discussion, 308–314): Introduction of the arc of ascensional difference and
the relationship between this arc and the length of daylight.

11 (Calculation, 315–337): Calculation, using the ascensional difference at the
paradigm latitude of 36◦, of the rising-times of the quadrants about the
equinoxes and the time difference between the longest or shortest daylight and
equinoctial daylight.

12 (Calculation, 338–367): Calculation, using the ascensional difference, of the
rising-times of the signs on either sides of the equinoxes (Pisces, Aries, Virgo,
Libra) at 36◦ latitude.

13 (Calculation, 368–397): Calculation, using the ascensional difference, of the
rising-times of the of the remaining signs at 36◦ latitude.

Part II

14.1 (Discussion, 398–399): Summary of the results so far.
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14.2 (Problem, 400–423): To construct the r-δ-circles on an arbitrary plate with a
given southernmost bounding circle.

15.1 (Discussion, 424–427): General introduction to Planis. 15–19.
15.2 (Problem, 428–433): Construction of the point representing the pole of the

ecliptic.
15.3 (Description, 434–438): Description of circles representing great circles

through the poles of the ecliptic.
16 (Problem, 439–458): To construct the circle that represents a given β-circle.

Construction of the r-β-circle along with the r-δ-circle that intersects it at the
equinoctial colure. Proof that the r-β-circle intersects the r-δ-circle.

17 (Theorem, 459–482): Proof that r-β-circles are non-concentric.

18 (Problem, 483–497): To construct an r-β-circle that extends beyond a south-
ernmost bounding circle.

19 (Problem, 498–505): To construct the line representing the β-circle passing
through the hidden pole.

20.1 (Discussion, 506–515): Introductory remarks on drawing on the plate a system
of equatorial and ecliptic circles and lines. Summary of the relevant results
established above.

20.2 (Discussion, 516–530): Practical methods for drawing the grid of circles and
lines representing both the ecliptic and equatorial coordinate systems.

Logical Structure

Insofar as it develops theorems, computations and problems that are employed con-
structively as the work progresses, the Planisphere is a treatise of deductive mathe-
matics. There are, however, no explicit, prefatory statements of the mathematical or
astronomical assumptions, as is found in a number of the preserved works of Greek
mathematical astronomy.

We exhibit the internal structure of the treatise in Table 1. The table shows that
certain sections are used repeatedly (as Planis. 1, 4, 7 & 8), while others are isolated
results (as Planis. 13 & 18). There are no series of theorems that lead successively
to a final result, as we find in many Greek mathematical works. This means that
there are no theorems that should be read as mere lemmas to the following theorems.
Moreover, the division into two sections is also reflected in the structure. Whereas
the sections of the first part show a strong dependence on the forgoing theorems,
those in the second part are much more independent of the results of this treatise,
relying instead on elementary geometry.
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1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
CT • • • • • • • • •
Alm • • • •
1 • • • • •
2 • •
3 • •
4 • • • •
5 • •
6 • •
7 • • •
8 • • •
9 •
10 • •
11 •
12 •
13
14 •
15 •
16 •
17 •
18
19 •

Table 1: The logical structure of the treatise. A section
in the column headings is supported by each unit
marked with a bullet in the row headings. The
column denoted Alm refers specifically to Alm. I
14–16, while CT refers to the chord table methods
set out in Alm. I 13.

At the same time that he produces the internal deductive framework exhibited in
Table 1, Ptolemy assumes that the reader can provide justifications for steps in the
geometric argument or computation on the basis of background knowledge in Eu-
clidean geometry and the trigonometric methods of the chord table. In many cases,
he seems to expect the reader to know that he is referring to specific propositions
in the Elements or Alm. I. For example, he assumes the following toolbox: Elem.
I, 10, 32, 47, III 3, 4, 21 (and its conv.), 26, 27, 28, 31 (and its conv.), 35 (and its
conv.) & 36, IV 5, V 16, VI 1–4, 6, 17, XI 3, 19, and Alm. I 13-16.22 As can be seen,
this is a fair range of propositions from the Elements including theorems in plane
geometry, ratio theory and its application to geometry, and solid geometry. Further-
more, Ptolemy assumes his reader is knowledgeable in chord-table trigonometry as
set out in Alm. I 13 and has access to the right ascensions and declinations of the
degrees of the ecliptic derived in Alm. I 14–16. There are also, however, a number
of places where the steps in Ptolemy’s argument cannot be justified by reference
to a single theorem in the Elements but require the general knowledge of geometry
that a Greek mathematical reader of the 2nd century could be assumed to posses.
In these cases, in the notes to our translation we have supplied arguments along the
lines of the ancient methods.

22The concept of the toolbox was introduced by Saito [1985], however, a good general overview is

given by Netz [1999, 216–239].



SCIAMVS 8 Ptolemy’s Planisphere 55
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�æJ. 	Jk. 	á« �èQK
@YË@ 	áÓ É� 	® 	Kð , X'H. 'k. ' @ ù
 ¢ 	k h. Q 	j	J 	̄ . Aî 	D« A �g. PA 	g Õæ�Q�K 20

, @ �	Q»QÓ ' è �é¢�® 	K Éªm.�
	'ð . ¼'h'X ¡ 	kð ' 	P' 'X ¡ 	k É�	�ð . h k. ' 	P k. AÒëð , 	á�
�JK
ðA���Ó

. Ð'¼ �èQK
 @Xð 'È'  �èQK
@X '¼' è ¡ 	k YªJ. K. ð ' ' è ¡ 	k YªJ. K. Õæ�Q 	Kð
	á« �éÒ�j. ÖÏ @ �èQºË@ ú


	̄ ú

�æË @ QK
ðYË@ 	áÓ 	á�
�KQK
 @YË@ A�KQ�
 	¢ 	� AÒë 	á�
�KQK
 @YË@ 	á�
�KAë �	à@ Èñ�̄ A 	̄

	Q»QÓ úÎ« Õæ�Q�K ú

�æË @ , ÉK
AÖÏ @ ½Ê 	®Ë @ �èQK
 @X �	à


@ð , @ñ� YªK. Aî 	DÓ AÒëYªK. ,PAî 	DË @ ÈYªÓ �èQK
 @X ú


�æJ. 	Jk.
�èQK
 @X Õæ��®�K , Ð �é¢�® 	K úÎ«ð   �é¢�® 	K úÎ« 	á�
�KQK
 @YË@ 	á�
�KAë �AÖ �ß ú �æk 	á�
 	®�	JK. 'Ð'  ¡ 	k ©¢�®K
 25

2 �ñJ
ÒÊ¢�. ] �ñÒJ
Ê¢�. T. 12 Ð

A�JÊK
ð ] Ð


A�JÊ 	Kð T. 13 © 	�	� ] 	à@ © 	�	� T. è ] ð I. 14 	àA¾Ó ] 	àA¾ 	̄

I. 20 k. ] X
TI, corr. Ana. 21 	á�
�JK
ðA���Ó ] 	á�
K
ðA���Ó TI. 22 Ð' ¼ ] Ñ£ TI, corr. T Ana. 24 YªK. ] @ �YªK. I.
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�	à

C 	̄ , Ð' 	à'X ¡ 	k É�	� 	à


@ ½Ë 	X 	àAëQK. . X �é¢�® 	Kð H.

�é¢�® 	JK. QÖ �ß Aî�	E

@ ú


	æ«@ , 	á�
 	®�	JK. 'X k. 'H. '@
	�	� ' 	P'X' 	à �ñ�̄ 	àñº�K , 	P k. �ñ�®Ë �éK
ðA�Ó ù
 ë ú


�æË@ , h k. �ñ�®Ë �éK
ðA�Ó 	à'@ �ñ�̄

Õç'
A �®Ë @  'X'Ð �IÊ�JÓ 	áÓ Ð'  Q¢�̄ úÎ« Õæ�Q�K ú

�æË @ �èQK
 @YË@ð , �éÖß
A�̄ @ �	X @  'X'Ð �éK
ð@ 	Q 	̄ . �èQK
 @X

. 	á�
 	®�	JK. PAî 	DË @ ÈYªÓ �èQK
@X Õæ��®�K @ �	X @ ú
æê 	̄ . X �é¢�® 	JK. QÖ �ß �éK
ð@ 	QË @
30 'k. �é¢�® 	K ú


�æJ. 	Jk. 	á« A 	JÊ� 	̄ @ 	X @ PAî 	DË @ ÈYªÖÏ �éK
 	P@ñÖÏ @ QK
 @ðYË@ ©J
Ôg. ú

	̄ A�	K


@ ½Ë 	X 	áÓ 	á��
J. �K Y�® 	̄

A 	JÊ�ðð ,PAî 	DË @ ÈYªÓ �èQK
 @X 	áÓ QK
@ðYË@ è 	Yë 	áÓ Yg@ð É¿ YªK. I. �m�'. AëP@Y�®Ó 	àñºK
 A�J
��̄

'¼' è ¡ 	k 	áÓ �éÒJ
�®�J�ÖÏ @  ñ¢	mÌ'@ éÊ� 	®�K AÓ A 	JÊªk. ð , �éÒJ
�®�J�Ó  ñ¢	m�'. 'X �é¢�® 	JK. ú
æ��®Ë@ 	¬@Q£@
. èA 	Jª 	�ð ø


	YË@ ÈA�JÖÏ @ @ 	Yë úÎ« ½Ë 	X ú

	̄ �AJ
�®Ë@ 	àA¿ , QK
 @ðX A 	KPX@ð , @ �	Q»QÓ ' è �é¢�® 	K A 	JÊªk. ð , @ �XAªK. @

øYg@ð �ék. PX 	áK
Qå��«ð A
��JÊ�K 'h k. 'k. ' 	P ú
æ�ñ�̄ 	áÓ �èYg@ð É¿ A 	Jª 	�ð 	à@ð A�	K


@ 	á��
J. Ë @ 	áÓð

35
�éK
AÒ�JÊ�K 'X k. 'H. '@ �èQK
 @X ñëð PAî 	DË @ ÈYªÓ �èQK
 @X AîE. ú


�æË @ h. PYËAK. , I. K
Q�®�JËAK. �é�®J
�̄ X 	á�
�Ô 	gð
ú


	̄ 	á�
J. Ê �® 	JÖÏ @ ú

�GQK
 @X 	áÓ �èYg@ð É¿ 	á�
K. ð PAî 	DË @ ÈYªÓ �èQK
 @X 	á�
K. AÒJ
 	̄ YªJ. Ë @ ù
 ëð , �ék. PX 	á�
�J�ð

úÎ« 	á�
�JÓñ�QÖÏ @ 	á�
�KQK
 @YË@ 	áÓ , È'  �èQK
@X �I	KA¿ ,PAî 	DË @ ÈYªÓ �èQK
 @X ú
æ.¢
�̄ úÎ« �éÓñ�QÖÏ @ �èQK
 @YË@

@ 	Yë úÎ«ð . ø
 ñ�J ��Ë@ I. Ê�® 	JÖÏ @ �èQK
 @X 'Ð'¼ �èQK
 @Xð ù

	®J
�Ë@ I. Ê�® 	JÖÏ @ �èQK
 @X , Ð �é¢�® 	K úÎ«ð '  �é¢�® 	K

ú

�æË @ �èQK
 @YË@ ù
 ëð , X �é¢�® 	Kð '  �é¢�® 	Kð 'H.

�é¢�® 	Kð 'Ð �é¢�® 	K úÎ« �éÓñ�QÖÏ @ �èQK
 @YË@ 	àñº�K ÈA�JÖÏ @
40

�é¢�® 	K úÎ«ð , ù

	®J
�Ë@ I. Ê�® 	JÖÏ @ ù
 ëð ,   �é¢�® 	K úÎ« 	á�
J. Ê �® 	JÖÏ @ ú


�GQK
 @X �AÖ �ß , h. ðQ�. Ë @ ¡�ð ú

	̄ QÖ �ß

�é¢�® 	K 	àñº�J 	̄ . X 'H. ú

�æ¢�® 	K úÎ« 	á�
 	®�	JK. PAî 	DË @ ÈYªÓ �èQK
 @X Õæ��®�Kð , ø
 ñ�J ��Ë@ I. Ê�® 	JÖÏ @ ù
 ëð , Ð

ñm� 	' 'H.
�é¢�® 	K 	áÓ Aî�	E


A¿ ù
 ë AÖ

�	ß @ É¾Ë@ �é»Qk �	à

B , 	K
Q	mÌ'@ �é¢�® 	K 'X �é¢�® 	Kð , ©J
K. QË @ �é¢�® 	K 'H.

úÎ« ©�®�K 	à

@ 	áºÖß
 B h. ðQ�. Ë @ úÍ@ ÉK
AÖÏ @ ½Ê 	®Ë @ �èQK
 @X �éÒ��̄ �	à


@ B

�
@ . X �é¢�® 	K úÍ@ Õç�' ' @ �é¢�® 	K

27 	à' @ ] P@ I. 28 1  ' X' Ð ] ¡ºÓ TI, corr. T Ana. Ð'   ] Q£ TI, corr. Ana. 2  ' X' Ð ] ¡ºÓ TI,

corr. T Ana. 29 QÖ �ß ] Õç�' Õç�' I. X ] H. TI, corr. Ana. 36 	á�
J. Ê �® 	JÖÏ @ ] 	á�
�JJ. Ê �® 	JÖÏ @ I. 38 Ð ] È TI. 40 	á�
J. Ê �® 	JÖÏ @ ]
	á�
�JJ. Ê �® 	JÖÏ @ I. 43

�éÒ��̄
]

�éÒ��®Ë@ I.
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é�JÒ��̄ AÖ
�	ß @ 	áºË . AêÊ¿ �éK
ðA���Ó ú
æ��̄ úÎ« ©�®�K A �	��
@ @ 	Qk. @ �éªK. P@ úÍ@ é�JÒ��̄ Bð �éK
ðA���Ó ú
æ��̄

Õæ��®�K AîD
Ê« ú

�æË @ ¡�® 	JË @ úÎ« h. ðQ�. Ë @ ÉK
@ð


@ Éªm.�

�' 	à

@ ú


	æ«@ , ¡�® 	̄ ÈA�JÖÏ @ @ 	Yë úÎ« ù

	ªJ. 	�K
 AÓ úÎ« 45

É¿ YªJ. Ë �� 	̄ @ñÖÏ @ YªJ. Ë @ úÎ« A 	Jm� 	�ð

@ Y�̄ ø


	YË@ ��K
Q¢ËAK. Õæ�Q�K ú

�æË@ ,PAî 	DË @ ÈYªÖÏ �éK
 	P@ñÖÏ @ QK
 @ðYË@

è 	YîE.
�	à


A 	̄ . h. ðQ�. Ë @ ½Ê 	̄ �èQK
 @X , �éÒ�j. ÖÏ @ �èQºË@ ú


	̄ PAî 	DË @ ÈYªÓ �èQK
@X 	áÓ h. ðQ�. Ë @ 	áÓ Yg@ð
	�	� QK
 @ðX 	àA¾Ó ' è I. ¢�̄ úÎ« 	PAm.�

�' ú �æË@ �éÒJ
�®�J�ÖÏ @  ñ¢	mÌ'@ ©J
Ôg. 	àñº�K èYgð �ék. PYË@
�èQºË@ ú


	̄ Q¢�®Ë@ úÎ« �éÊK. A �®�JÖÏ @ @ 	Qk. B@ QK
A 	¢ 	� ù
 ë ú �æË@ @ 	Qk. B@ úÎ« ÉK
AÖÏ @ ½Ê 	®Ë @ �èQK
 @X 	áÓ QÖ �ß PAî 	DË @
. �éÒ�j. ÖÏ @ 50

[2]

Õæ��®�K AÖ
�	ß @ ��
Ë , ÉK
AÖÏ @ ½Ê 	®Ë @ �èQK
 @X �IÖÞ�P AÓ É�JÓ úÎ« Õæ�Q�K ú �æË@ , �� 	̄ B@ QK
 @ðX ©J
Ôg. 	àñº�Kð

Aî�	E

@ ú


	æ«@ , �èñ�®ËAK. 	á�
 	®�	JK. h. ðQ�. Ë @ ½Ê 	̄ �èQK
 @X A �	��
@ Õæ��®�K Aî �	DºË , 	á�
 	®�	JK. ¡�® 	̄ PAî 	DË @ ÈYªÓ �èQK
 @X
. �éÒ�j. ÖÏ @ �èQºË@ ú


	̄ Q¢�®Ë@ úÎ« �éÊK. A �®�JÖÏ @ @ 	Qk. B@ QK
A 	¢ 	� �èñ�®ËAK. ù
 ë ú

�æË @ @ 	Qk. B@ úÎ« Õæ�Q�K A �	��
@

h. ðQ�. Ë @ ¡�ð ú

	̄ QÖ �ß ú


�æË @ �èQK
 @YË@ð . è 	Q»QÓ Èñk 'X k. 'H. '@ �èQK
 @X PAî 	DË @ ÈYªÓ �èQK
 @X 	áº�JÊ 	̄

I. ¢�̄ úÎ« 	Q�
m.�
	'ð . X �é¢�® 	Kð 'H.

�é¢�® 	K úÎ« 	á�
 	®�	JK. PAî 	DË @ ÈYªÓ �èQK
 @X ©¢�®�Kð , X'h'H. ' 	P �èQK
 @X 55

.k. 'h' è' @' 	P ¡ 	k 	áºJ
Ëð . ©�̄ð AÓ 	J
» , A �ÒJ
�®�J�Ó A �¢ 	k PAî 	DË @ 	�	� �èQK
 @X 	àA¾Ó ' è
�èQºË@ ú


	̄ Q¢�®Ë@ úÎ« 	àA�JÊK. A �®�JÓ AÒë 	á�
�JÊË @ 	á�
�J¢�® 	JÊË 	àA�KQ�
 	¢ 	� 'h ' 	P ú

�æ¢�® 	K �	à@ Èñ�̄ A 	̄

É� 	®�K 	á�
�J¢�® 	JË @ 	á�
�KAë úÎ« Õæ�Q�K ú

�æË @ PAî 	DË @ ÈYªÓ �èQK
 @YË �éK
 	P@ñÖÏ @ QK
 @ðYË@ �	à


@ ú


	æ«@ , �éÒ�j. ÖÏ @
ú
æ

�� ½Ë 	X �	à

@ AÒ» , èA 	J 	®�ð ø


	YË@ ÈA�JÖÏ @ úÎ« PAî 	DË @ ÈYªÓ �èQK
 @X ú

�æJ. 	Jk. 	á« 	á�
�JK
ðA���Ó 	á�
�ñ�̄

. A �	��
@ �éÒ�j. ÖÏ @ �èQºË@ ú

	̄ 	�QªK
 60

45 h. ðQ�. Ë @ ½Ê 	̄ �èQK
 @X . . . Éªm.�
�' 	à


@ ú


	æ«@ ] cited Mas, Y�̄
omit. Mas. 51 QK
@ðX ] QK
@ðX QK
@ðX I.

55 X' h' H. ' 	P ] ½m�'P I. X ] ¼ I. 56 k. ' h' è' @' 	P ] k. ' h' @' 	P I, k. ' h' @' 	P with è in marg. T.

59 	á�
�JK
ðA���Ó ] 	á�K
ðA���Ó I.
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¡ 	k ñëð ,k. ' @ ¡ 	k úÎ« �éÖß
A�̄ AK
 @ð 	P úÎ« A �ÒJ
�®�J�Ó A �¢ 	k ' è �é¢�® 	K 	áÓ h. Q	m� 	' 	à

@ ½Ë 	X 	àAëQK.

'k. ' '@ �éK
ð@ 	P �	à

@ 	á��
J. Ë @ 	áÔ 	̄ . È'h'  ¡ 	kð ' '¼' 	P ¡ 	kð '  k. ¡ 	kð ' '@ ¡ 	k É�	�ð .  ' è

ú

	̄ 'X' è É�JÓ h' è ¡ 	k ú


	̄ ' è' 	P ¡ 	k H. Qå 	� �	à

Bð . �èQK
 @X 	�	� 'k. ' '@ �ñ�̄ �	à


@ ½Ë 	Xð , �éÖß
A�̄

' ' è ¡ 	k �éJ.� 	�» ' ' è ¡ 	k úÍ@ ' è' 	P ¡ 	k �éJ.�	� 	àñº�K , éÊ�JÓ ú

	̄ ' ' è É�JÓ é�	K


@ ú


	æ«@ , éÊ�JÓ
65

�éK
ð@ 	Q 	̄ . �éÖß
A �®Ë @ ù
 ë 'h' ' 	P �éK
ð@ 	Pð , �éK
ð@ 	QË @ Õç'
A�̄ A �	��
@ 'h' ' 	P �IÊ�JÓ 	àñºJ
[ 	̄ ] . h' è ¡ 	k úÍ@
' @' '¼ �éK
ð@ 	P �HPA� , �é»Q�� ��Ó 'h' '@ �éK
ð@ 	P A 	J¢�®� @ 	XA 	̄ . k. ' '@ �éK
ð@ 	QË �éK
ðA�Ó @ �	X @ 'È' ' 	P
ù
 ¢ 	k �	à


@ A�	J��
K. Y�® 	̄ . È k. �ñ�®Ë �éK
ðA�Ó A �	��
@ ' @'¼ �ñ�® 	̄ . �éJ
�̄ AJ. Ë @ k. ' 'h �éK
ð@ 	QË �éK
ðA�Ó �éJ
�̄ AJ. Ë @

	àA¿ð , @ñ� YªK. PAî 	DË @ ÈYªÓ �èQK
 @X 	áÓ AÒëYªK. 	á�
�JÊË @ 	á�
�ñ�®Ë@ ú

	̄ Q¢�. C�ð AÖÏ 'È'  ' 	P'¼' 

¡ 	k ú

	̄ A 	K 	Y 	g@ ,   �é¢�® 	K ù
 ëð , ©K. QË @ 'k. �é¢�® 	Kð '@ �é¢�® 	K 	áÓ AëYªK. ú


�æË @ �é¢�® 	JË @ 	áÓ AÒêk. Q	m×
70 PAî 	DË @ ÈYªÓ �èQK
 @YË 	á�
�JK
 	P@ñÖÏ @ 	á�
�KQK
 @YË@ Õæ�Q�K AîD
Ê« ú


�æË@ ¡�® 	JË @ ù
 ëð , h �é¢�® 	Kð ' 	P �é¢�® 	K 'k. ' 	P
úÎ« �èñ�®ËAK. ù
 ë ú


�æË @ ¡�® 	JËAK. �QÓ Y�̄ 'h' è' 	P ¡ 	k 	àñºK
 , ½Ë 	YËð . @ñ� YªK. Aî 	D« AÒëYªK. 	á�
�JÊË @
. ÉK
AÖÏ @ ½Ê 	®Ë @ �èQK
 @X Q¢�̄

[3]

	àñº�K ú �æk �� 	̄ B@ �èQK
 @X 	àA¾Ó PAî 	DË @ ÈYªÓ �èQK
 @X 	á« �éÊK
AÓ øQ 	k@ �èQK
 @X A 	JÖÞ�P 	à@ð A�	K @ Èñ�̄ @ð
�èQK
@YË@ð �èQK
 @YË@ è 	Yë ©£A�®�K Aª 	�ñÓ 	àA¿ , 	á�
 	®�	JK. AëYgð PAî 	DË @ ÈYªÓ �èQK
 @X Õæ��®�K �èQK
 @YË@ è 	Yë

75 QÖß
 AÒî 	DJ
K. É��
 ø

	YË@ ¡	mÌ'@ �	à


@ ú


	æ«@ , �èñ�®ËAK. Q¢�®Ë@ úÎ« 	á�
�JÊK. A �®�JÓ h. ðQ�. Ë @ ¡�ð ú

	̄ QÖ �ß ú


�æË@
.PAî 	DË @ ÈYªÓ �èQK
@X 	Q»QÖß.

�èQK
 @X h. ðQ�. Ë @ ½Ê 	̄ �èQK
 @Xð , è 	Q»QÓ Èñk 'X k. 'H. '@ �èQK
 @X PAî 	DË @ ÈYªÓ �èQK
 @X A �	��
@ 	áº�JÊ 	̄

,k. ' '@'h �èQK
@X �� 	̄ B@ �èQK
 @Xð . X' è'H. Q¢�̄ úÎ« 	á�
 	®�	JK. PAî 	DË @ ÈYªÓ �èQK
 @X Õæ��®�JËð , X' 'H. 'h
¼Q�� ��ÖÏ @ ©£A�®�JË @ 	áºJ
Ëð .k. ' è' @ Q¢�̄ úÎ« 	á�
 	®�	JK. PAî 	DË @ ÈYªÓ �èQK
 @X A �	��
@ �èQK
 @YË@ è 	Yë Õæ��®�Kð

80 ' è 	Q»QÖß. 'h �é¢�® 	K A 	JÊ�ð 	à@ A�	K @ Èñ�̄ A 	̄ .   �é¢�® 	Kð 'h �é¢�® 	K �� 	̄ B@ �èQK
 @Xð h. ðQ�. Ë @ ½Ê 	̄ �èQK
 @YË
.   �é¢�® 	K úÍ@ PA� , �éÓA�®�J�B@ úÎ« ¡	mÌ'@ ½Ë 	X A 	Jk. Q 	k


@ð ,PAî 	DË @ 	�	� �èQK
 @X 	àA¾Ó Õæ


�®�J�Ó ¡	m�'.
ù
 ëð , �� 	̄ B@ �èQK
 @X ©¢�®K
 ú �æk �éÓA�®�J�B@ úÎ« ék. Q	m� 	'ð , è'h ¡ 	k É�	� A�	K


@ ½Ë 	X 	àAëQK.

�èQK
 @X ù
 ëð , A �	��
@ h. ðQ�. Ë @ ½Ê 	̄ �èQK
 @YË �é»Q�� ��Ó '  �é¢�® 	K �	à

@ Èñ�̄ A 	̄ .   �é¢�® 	K úÎ« ,k. ' @'h �èQK
 @X

62 È' h'   ] h'  ' X in marg. T. 63 h' è ] k. ' è I. 65 	àñºJ
 	̄
] 	àñºK
 TI. 66 @ �	X @ ] omit. I.

67 k. '  ' h ] È'   k. I, l�� 'h. '  ' h in marg. T. 70 ¡�®	JË @ ] �é¢�® 	JË @ I. 71 ¡�®	JËAK. ] �é¢�® 	JËAK. TI.

74 Aª 	�ñÓ ] ù
 ª 	�ñÓ corr. to Aª 	�ñÓ T. 75 É��
 ] É��JK
 I. 77 è 	Q»QÓ ] è 	Q»QÓ TI. X'  ' H. ' h �èQK
@X ]

�èQK
 @X omit. I, ½¢J
k TI, corr. T Ana. 78 X' è' H. ] ½îE. TI, corr. Ana. 80 A 	JÊ�ð ] A 	JÊ� 	̄

I. 82   �é¢�® 	K úÎ« . . . É�	� A�	K

@ ] cited Mas, è' h ¡ 	k: h' è ¡ 	k Mas,

�éÓA�®�J�B@: �éÓA �®�J�@ Mas,

k. ' @' h �èQK
 @X ù
 ëð omit. Mas. 82 è' h ] è k. TI, corr. Ana.
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, è �é¢�® 	K úÎ« 	àAª£A�®�JÓ 'k. ' @ ' 'h A¢ 	k 'k. ' '@'h �èQK
 @X ú

	̄ h. Q 	k@ Y�̄ é�	K


C 	̄ . X' 'H. 'h

'k. ' è ¡ 	k ú

	̄ ' è' @ ¡ 	k ½Ë 	Y»ð ,k. ' è ¡ 	k ú


	̄ ' è' @ ¡ 	k É�JÓ ' ' è ¡ 	k ú

	̄ è'h ¡ 	k 	àñºK
 85

A¢	m 	̄ .  ' è ¡ 	k ú

	̄ ' è'h ¡ 	k É�JÓ 'X' è ¡ 	k ú


	̄ @ �	X @ ' è'H. ¡	m 	̄ . X' è ¡ 	k ú

	̄ ' è'H. ¡ 	k É�JÓ

, h. ðQ�. Ë @ ½Ê 	̄ �èQK
 @X úÎ« '  �é¢�® 	K 	àñº�K 	à

@ ½Ë 	X 	áÓ I. j. J
 	̄ . �èYg@ð �èQK
@X ú


	̄ @ �	X @ 'h'  'X'H.
¡	mÌ'A 	̄ .k. ' '@'h �èQK
 @X ù
 ëð , �� 	̄ B@ �èQK
 @X úÎ« Aî�	E


@ A 	J 	®�ð A�	J» Y�̄ð , X' 'H. 'h �èQK
@X ù
 ëð

�èQK
@X 	Q»QÖß. QÖß
 Y�̄ ¡ 	k ñë �� 	̄ B@ �èQK
 @Xð h. ðQ�. Ë @ ½Ê 	̄ �èQK
 @X ©£A�®�K ù
 ª 	�ñÓ 	á�
K. É��
 ø

	YË@

úÎ« 	àAª£A�®�JK
 h. ðQ�. Ë @ ½Ê 	̄ �èQK
 @Xð �� 	̄ B@ �èQK
 @X �	à

@ ½Ë 	X 	áÓ 	á��
J. �K Y�® 	̄ . è �é¢�® 	K ñëð ,PAî 	DË @ ÈYªÓ 90

. 	á��
J. 	K 	à

@ A 	KXP@ AÓ ½Ë 	Xð . �èñ�®ËAK. Q¢�®Ë@ úÎ« 	á�
�JÊK. A �®�JÓ 	á�
�J¢�® 	K

[4]

Õæ�Q�K ú

�æË@ , �éK
 	P@ñ�JÖÏ @ QK
 @ðYË@ PA¢�̄ @ 	¬A�	�@ �éJ.�	� AÓ úÍ@ 	à

�
B@ Q 	¢	J 	JÊ 	̄ , ½Ë 	X A�	J��
J. 	̄ A 	JÓ �Y�®�K Y�̄ 	XA 	̄

ú �æk AëA 	Jª 	�ñ 	̄ A 	JÓ �Y�®�K ú

�æË @ ,PAî 	DË @ ÈYªÓ �èQK
@X Q¢�̄ 	�	� úÍ@ , ÉK
AÖÏ @ ½Ê 	®Ë @ �èQK
 @X h. ðQK. úÎ«

. �éÒ�j. ÖÏ @ �èQºË@ ú

	̄ Qê 	¢�
 AÖÏ �é�® 	̄ @ñÓ A �	��
@ XYªËAK. Yg. ñ�K AêªËA¢Ó 	à


@ ÕÎª 	K

	àAª£A�®�JK
 	áK
Q¢�̄ Aî 	DÓ h. Q	m� 	'ð . è 	Q»QÓ Èñk 'X k. 'H. '@ �èQK
 @X PAî 	DË @ ÈYªÓ �èQK
 @X A �	��
@ 	áº�JÊ 	̄
95

	á« É� 	® 	Kð . 	P �é¢�® 	K úÍ@ �éÓA�®�J�B@ úÎ« k. '@ ¡ 	k h. Q	m� 	'ð . X'H. k. ' @ AÒëð , �éÖß
A�̄ AK
 @ð 	P úÎ«
Y�̄ð . 	P' 'X ¡ 	kð 'h'¼'X ¡ 	k É�	�ð .   k. 'h k. AÒëð , 	á�
�JK
ðA���Ó 	á�
�ñ�̄ 'k. �é¢�® 	K ú


�æJ. 	Jk.
Aî 	DÓ 	àA¿ AÓ , @ñ� YªK. Aî 	D« AëYªK. ú


�æË @ ,PAî 	DË @ ÈYªÓ �èQK
 @YË �éK
 	P@ñÖÏ @ QK
 @ðYË@ �	à

@ A 	Jm� 	�ð


A 	̄ A 	JÓ �Y�®�K

84 X'  ' H. ' h ] ½¢Jk T, ½¢J.k. I, corr. Ana. A¢ 	k ] omit. I. 	àAª£A�®�JÓ ] 	àAª£A�®�JJ
 	̄
T. 85 è' h ]

è k. TI, corr. Ana. ½Ë 	Y»ð ] ½Ë 	YËð TI. 88 X'  ' H. ' h ] ½¢Jë TI, corr. T Ana. ù
 ëð ] è 	Yëð I.

89 ñë ] ñëð TI. 90 	àAª£A�®�JK
 ] 	àA�Jª 	�A�®JK I. 92
�éJ.�	� ] �éJ. ��	� TI, proportio Her. 94

�éÒ�j. ÖÏ @ ] �éÒJ
�®�J�ÖÏ @
TI, in spera corpora applanes et decliui (applanos, a planis in other mss) Her. 95 Aî 	DÓ ] AÒî 	DÓ I.

96 AK
 @ð 	P ] @ð 	P I. X' H. 'k. ' @ ] YK
 h@ I. É� 	® 	Kð . 	P ] É� 	® 	Kð I. 97 	á�
�JK
ðA���Ó ] 	á�
K
ðA���Ó TI. 98 @ñ� YªK. ]
@ñ� AÓ YªK. I.
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	Q»QÓ úÎª 	̄ H. ñ	Jm.Ì'@ úÍ@ ÉJ
Ó@ Aî 	DÓ 	àA¿ AÓð , ¼' è YªJ. K. ð è 	Q»QÓ úÎ« Õæ�P AÖ
�	ßA

	̄ ÈAÒ ��Ë@ úÍ@ ÉJ
Ó@
100 . 	P' è YªJ. K. ð è

�éK
ðA�Ó 'h k. �ñ�̄ �	à

B . ÈA�JÖÏ @ @ 	Yë úÎ« '¼' è ¡ 	k úÍ@ ' 	P' è ¡ 	k �éJ.�	� �	à


@ A 	JË 	á��
J. ��K
ð

, AêË �éÊK. A �®ÖÏ @ AK
 @ð 	QËA 	̄ . �èQK
 @X 	�	� AÒë 	á�
«ñÒm.× ,   k. 'H. �ñ�̄ð , h'H. �ñ�® 	̄ '  k. �ñ�®Ë
�éK
ð@ 	P ©Ó '¼'X' è �éK
ð@ 	Pð . �éÖß
A�̄ �éK
ð@ 	QË 	á�
�JK
ðA�Ó 	á�
«ñÒm.× , 	P'X' è �éK
ð@ 	Pð '¼'X' è �éK
ð@ 	P ú


	æ«@
�éîD
J. �� �éK
ð@ 	QË @ Õç'
A �®Ë @ @ �	X @ 'X' è' 	P �IÊ�JÔ 	̄ . X'¼' è �éK
ð@ 	QË �éK
ðA�Ó ' 	P'X' è �éK
ð@ 	Q 	̄ , �éÖß
A�̄ A �	��
@ 'X'¼' è

105 . ¼' è ¡ 	k úÍ@ è'X ¡ 	k �éJ.� 	�» X' è ¡ 	k úÍ@ ' è' 	P ¡ 	k �éJ.� 	� 	̄ , �éK
ð@ 	QË @ Õç'
A �®Ë @ '¼' è'X �IÊ�JÖß.
, h'H. �ñ�®Ë �éK
ðA�ÖÏ @ �ñ�®Ë@ ú


	æ«@ , �èQK
 @YË@ 	�	� 	áÓ ù

�®K. AÓ úÍ@ ' 'H. �ñ�̄ �éJ.�	� 	áºË

�éÓñ�QÖÏ @ �èQK
 @YË@ 	áÓ 	P' è ¡ 	k úÎ« ú

�æË@ �ñ�®Ë@ �éJ.� 	�»ð , X' 	P' è �éK
ð@ 	P úÍ@ ' 	P'X' è �éK
ð@ 	P �éJ.� 	�»

�éJ.� 	� 	̄ . Aî 	DJ
ªK. �èQK
 @YË@ è 	Yë 	áÓ X' è ¡ 	k úÎ« ú

�æË@ �ñ�®Ë@ úÍ@ �éK
ð@ 	QË @ Õç'
A �®Ë @ ' 	P' è'X �IÊ�JÓ úÎ«

ú

	æ«@ , �èQK
 @YË@ 	�	� 	áÓ ù


�®K. AÓ Q�KñK
 ø

	YË@ ¡	mÌ'@ úÍ@ ' 'H. �ñ�̄ Q�KñK
 ø


	YË@ Õæ

�®�J�ÖÏ @ ¡	mÌ'@

110 . ¼' è ¡ 	k úÍ@ ' è'X ¡ 	k �éJ.� 	�»ð 'X' è ¡ 	k úÍ@ ' è' 	P ¡ 	k �éJ.� 	�» , h'H. �ñ�̄

'h k. ú
æ�ñ�̄ 	áÓ Yg@ð É¿ �èPñ�Ë@ è 	Yë É�JÓ ú

	̄ Bð@ © 	�	J 	̄ , ½Ë 	X A 	JÊ ��m 	̄ A 	JÓ �Y�®�K Y�̄ 	XA 	̄

�èQK
 @X AîE. ú

�æË@ h. PYËAK. , �éJ
 	K A�K 	áK
Qå��«ð �é�®J
�̄ X 	á�
�Ô 	gð øYg@ð �ék. PX 	áK
Qå��«ð A

��JÊ�K   k.
ÈYªÓ �èQK
@X 	á�
K. AÒJ
 	̄ YªJ. Ë @ Aî�	E


@ A 	Jª 	�ð ú


�æË@ h. PYË@ ù
 ëð , �ék. PX 	á�
�J�ð �éK
AÒ�JÊ�K 'X k. 'H. '@
. A �	��
@ �éÒ�j. ÖÏ @ �èQºË@ ú


	̄ A 	JÓC¿ ú

	̄ 	á�
J. Ê �® 	JÖÏ @ ú


�GQK
 @X 	áÓ �èYg@ð É¿ 	á�
K. ð PAî 	DË @
115 h. PYËAK. , �éJ
 	K A�K 	áK
Qå��«ð �é�®J
�̄ X 	á�
�Ô 	gð øYg@ð �ék. PX Qå��« �é�JÊ�Kð �éK
AÓ  'H. �ñ�̄ 	àñº�J 	̄

�I� ñëð �èQK
@YË@ 	�	� 	áÓ ù

�®K. AÓ h'H. �ñ�̄ð , �ék. PX 	á�
�J�ð �éK
AÒ�JÊ�K �èQK
 @YË@ è 	Yë AîE. ú


�æË@

99 ¼' è ] ¼' è 'Që I. 105 X' è ] ¼' è TI, corr. T Ana. è' X ] è' ¼ TI, corr. T Ana. 107 X' 	P' è ]
¼' 	P' è TI, corr. T Ana. 	P' è ] X' è TI, corr. T Ana. 108 X' è ] ¼' è TI, corr. T Ana. 110 1 �éJ.� 	�» ]
�éK
ð@ 	P 	á�.g. úÍ@ ' 	P' è ¡ 	k ú


	æ«@ '  ' X' H.
�éK
ð@ 	P 	á�.g. �éJ.� 	�» ' X'   úÍ@ '  ' H.

�éJ.�	� �	àB , �é[J
] ��[A]k
è' X ¡ 	k ú


	æ«@ ' ' H. ' X in marg. T. 112   k. ] ¡ 	k I.
�éJ
 	K A�K 	áK
Qå��«ð �é�®J
�̄ X ]

�éJ
 	K A�K 	áK
Qå��«ð omit. I,

�éJ
 	K A�K 	áK
Qå��«ð �é�®J
�̄ X above T. 115  ' H. ]  P I. 116 �ñ�̄ð ] �ñ�̄ð �ñ�̄ð I.
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	Qk. �éK
AÓ ' 'H. �ñ�̄ Q�KñK
 ø

	YË@ Õæ


�®�J�ÖÏ @ ¡	mÌ'@ð . �éJ
 	K A�K 	àñªK. P@ð ��K
A�̄ X 	àAÖ �ßð �ék. PX 	àñ�J�ð
Y�® 	̄ @ �	Qk. 	àðQå��«ð �éK
AÓ Q¢�®Ë@ AîE. ú


�æË@ @ 	Qk. BAK. , �éJ
 	K A�K 	àðQå��«ð ú

	GAÖ �ßð �é�®J
�̄ X 	àñ�JÊ�Kð �IÊ�Kð

@ 	Qk. B@ è 	Yë 	áÓ @ �	Qk. 	àñ�J�ð �é�Ô 	g 'h'H. Q�KñK
 ø

	YË@ ¡	mÌ'@ð , ù
 ¢�j. ÖÏ @ H. A�J» ú


	̄ ½Ë 	X A 	Jª 	�ð
ù
 ë '¼' è ¡ 	k úÍ@ X' è ¡ 	k �éJ.�	�ð 'X' è ¡ 	k úÍ@ @ �	X @ ' è' 	P ¡ 	k �éJ.�	� . �é�®J
�̄ X 	àðQå��«ð ©���ð 120

	áK
Qå��«ð ©���ð @ �	Qk. 	á�
�J�ð �é�Ô 	g úÍ@ �éJ
 	K A�K 	áK
Qå��«ð 	àAÖ �ßð �é�®J
�̄ X 	á�
�JÊ�Kð �IÊ�Kð 	Qk. �éK
AÓ �éJ.�	�
@ �	Qk. 	á�
�J� AîE. ñë ú


�æË@ @ 	Qk. BAK. ,PAî 	DË @ ÈYªÓ �èQK
@X Q¢�̄ 	�	� ñë ø

	YË@ , X' è ¡ 	k ½Ë 	YËð . �é�®J
�̄ X

	àAÖ �ßð @ �	Qk. 	àñª���ð 	àA 	J�K @ , 	P' è ¡ 	k ñëð , ø
 ñ�J ��Ë@ I. Ê�® 	JÖÏ @ �èQK
 @X Q¢�̄ 	�	� 	àñºK
 @ 	Qk. B@ ½Ê�JK.
��K
A�̄ X ©K. P@ð @ �	Qk. 	á�
�JÊ�Kð �éª��� ù


	®J
�Ë@ I. Ê�® 	JÖÏ @ �èQK
 @X Q¢�̄ 	�	�ð , �éJ
 	K A�K �èQå��« �Ô 	gð ��K
A�̄ X
. �éJ
 	K A�K �èQå��« ©���ð 125

ú

	̄ Q¢�. 	á�
�KQK
 @YË@ 	á�
�KAë �AÖ �ß �I	KA¿ @ 	X @ , h. ðQ�. Ë @ ½Ê 	̄ �èQK
 @X Q¢�̄ �	à


@ ½Ë 	X 	áÓ l� 	�ð Y�̄ð

©K. P@ð �é�®J
�̄ X Qå��« A�J 	��K @ð @ �	Qk. 	àñ�JÊ�Kð øYg@ð �éK
AÓ ñëð , A �ªJ
Ôg. AÒîE
Q¢�̄ 	�	� ñë , AëQ¢�̄

Q¢�̄ 	�	� �	à

@ð , @ �	Qk. 	á�
�J� PAî 	DË @ ÈYªÓ �èQK
 @X Q¢�̄ 	�	� AîE. 	àñºK
 ú


�æË@ @ 	Qk. BAK. , �éJ
 	K A�K 	àñ�JÊ�Kð
	á�
K. ø


	YË@ ¡	mÌ'@ð . �éJ
 	K A�K �èQå��« ©J.�ð �é�®J
�̄ X 	àñ�JÊ�Kð �I�ð @ �	Qk. 	àñ�J�ð �é�Ô 	g h. ðQ�. Ë @ ½Ê 	̄ �èQK
 @X
�é�®J
�̄ X 	á�
�JÊ�Kð øYg@ð @ 	Qk. B@ è 	Yë 	áÓ @ �	Qk. 	àðQå��«ð �é�J� 	àñºK
 PAî 	DË @ ÈYªÓ �èQK
 @X 	Q»QÓð è 	Q»QÓ 130

. �éJ
 	K A�K 	á�
�Ô 	gð AJ
 	K AÖ �ßð
[5]

, ú

	G @ñ�K ©���ð �é�®J
�̄ X 	á�
�JÊ�Kð �ék. PX 	áK
Qå��«   k. 'k. 'h ú
æ�ñ�̄ 	áÓ �èYg@ð É¿ A �	��
@ © 	�	�ð

	áÓ 	àC� 	®�K 	á�
�JÊË @ PAî 	DË @ ÈYªÖÏ 	á�
�JK
 	P@ñÖÏ @ 	á�
�KQK
 @YË@ 	á�
K. ð PAî 	DË @ ÈYªÓ �èQK
 @X 	á�
K. AÒJ
 	̄ YªJ. Ë @ ñëð
�ñ�̄ 	àñºK
 ú �æk , �ék. PX 	á�
�JÊ�K 	á�
J. Ê �® 	JÖÏ @ ú


�æ¢�® 	K ú

�æJ. 	Jk. 	á« h. ðQ�. Ë @ ¡�ñK. QÖ �ß ú


�æË@ �èQK
 @YË@
�éJ
 	K AÖ �ß AëQ�KñK
 ø


	YË@ Õæ

�®�J�ÖÏ @ ¡	mÌ'@ð , ú


	G @ñ�K ©���ð �é�®J
�̄ X 	á�
�JÊ�Kð �HAg. PX Qå��«ð �éK
AÓ  'H. 135

�ék. PX 	á�
�J�ð A �ª��� 'h'H. �ñ�̄ð , �éJ
 	K A�K 	á�
�Ô 	gð A �ªJ.�ð �é�®J
�̄ X 	á�
�JÊ�Kð A ��Ô 	gð @ �	Qk. 	á�
ª���ð
@ �	Qk. 	á�
�J�ð �éJ
 	KAÖ �ß AëQ�KñK
 ø


	YË@ Õæ

�®�J�ÖÏ @ ¡	mÌ'@ð , �éJ
 	K A�K 	á�
�Ô 	gð øYg@ð �é�®J
�̄ X 	áK
Qå��«ð A �ª���ð

¡ 	k �éJ.�	�ð X' è ¡ 	k úÍ@ @ �	X @ ' è' 	P ¡ 	k �éJ.� 	� 	̄ . �éJ
 	K A�K 	á�
�Ô 	gð øYg@ð �é�®J
�̄ X 	áK
Qå��«ð �IÊ�Kð
	á�
�Ô 	gð ©J.�ð �é�®J
�̄ X 	á�
�JÊ�Kð �Ô 	gð @ �	Qk. 	á�
ª���ð �éJ
 	KAÖ �ß �éJ.�	� ù
 ë , ¼' è ¡ 	k úÍ@ A �	��
@ X' è

AîE. ú

�æË @ @ 	Qk. BA 	̄ . �éJ
 	K A�K 	á�
�Ô 	gð øYg@ð �é�®J
�̄ X 	áK
Qå��«ð �IÊ�Kð @ �	Qk. 	á�
�J�ð �éJ
 	K AÖ �ß úÍ@ �éJ
 	K A�K 140

120 2 X' è ] ½ë TI, corr. T Ana. 122 ½Ë 	YËð ] ½Ë 	Y»ð I. X' è ] ½ë TI, corr. T Ana. @ 	Qk. BAK. ]
@ 	Qk. BA 	̄

I. 123 	P' è ] ñë TI, corr. T Ana. 	àñª���ð ] 	àñªJ.�ð I. 127 AëQ¢�̄
] AîE. Q¢�̄

TI, corr.

T. 128 	àñºK
 ú

�æË @ ] 	àñºK AîE ú


�æË@ I. 130 	àðQå��«ð �é�J� ] 	àðQå��«ð �éªJ.� TI, XXVI Her. 132   k. ]
¡ 	k I. ú


	G @ñ�K . . . 	á�
�JÊ�Kð ]
�é�®J
�̄ X 	á�
�JÊ�Kð A �ª���ð TI, puncta XXX secundas IX Her. 133 	àC� 	®�K ] 	àC� 	®K


T. 135 ú

	G @ñ�K . . . 	á�
�JÊ�Kð ]

�é�®J
�̄ X 	á�
�JÊ�Kð A �ª���ð TI, puncta XXX secundas IX Her. AëQ�KñK
 ] AëQ�Kñ�K I.

137 	áK
Qå��«ð A �ª���ð ] 	áK
Qå��«ð øYg@ð TI, XXIX Her. 138 �IÊ�Kð ] A�JJKð I, AJ�� 	Kð T. X' è ] ¼' è TI,

corr. T Ana. 139 X' è ] ¼' è TI, corr. T Ana.
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	á�
 	J�K @ð �é�®J
�̄ X 	áK
Qå��«ð A �ª���ð @ �	Qk. 	á�
 	KAÖ �ßð �é�J� ' 	P' è ¡ 	k AîE. 	àñºK
 , @ �	Qk. 	á�
�J� X' è ¡ 	k 	àñºK
�é�®J
�̄ X 	á�
�JÊ�Kð A �ªJ.�ð @ 	Qk. B@ è 	Yë 	áÓ @ �	Qk. 	á�
ªK. P@ð @ �Yg@ð 	àñºK
 '¼' è ¡ 	kð , �éJ
 	K A�K 	á�
ªK. P@ð
. �éJ
 	K A�K �èQå��« �Ô 	gð

[6]

A �ª���ð �ék. PX �èQå��« øYg@   k. ð 'k. 'h ú
æ�ñ�̄ 	áÓ �èYg@ð É¿ © 	�	� , ÈA�JÖÏ @ @ 	Yë úÎ«ð
145

�èQK
 @X ú
æ.¢
�̄ úÎ« Õæ�Q�K ú


�æË@ ùÒ 	¢ªË@ �èQK
 @YË@ ú

	̄ YªJ. Ë @ ù
 ëð , �éJ
 	K A�K 	á�
�Ô 	gð A �ª���ð �é�®J
�̄ X 	á�
�JÊ�Kð

	á�
�J� 	àC� 	®K
 	á�
�JÊË @ AêË 	á�
�JK
 	P@ñÖÏ @ 	á�
�KQK
 @YË@ 	á�
K. ð PAî 	DË @ ÈYªÓ �èQK
 @X 	á�
K. AÒJ
 	̄ PAî 	DË @ ÈYªÓ
�ñ�̄ �éÊÔg. 	àñº�J 	̄ . 	á�
J. Ê �® 	JÖÏ @ ú


�æ¢�® 	K ú

�æJ. 	Jk. 	á« h. ðQ�. Ë @ ¡�ñK. QÖ �ß ú


�æË @ �èQK
 @YË@ 	áÓ �ék. PX
ø


	YË@ Õæ

�®�J�ÖÏ @ ¡	mÌ'@ð , �éJ
 	K A�K 	á�
�Ô 	gð A �ª���ð �é�®J
�̄ X 	á�
�JÊ�Kð A �ª���ð �ék. PXð �ék. PX �éK
AÓ ' 'H.

�ék. PX 	á�
ªJ.�ð A�J
 	K AÖ �ß 'h'H. �ñ�̄ 	àñº�Kð , �éJ
 	K A�K �èQå��« ©K. P@ð 	á�
�J�®J
�̄ Xð @ �	Qk. 	á�
ª��� �é�JÊ�K AëQ�KñK

150 A

��JÊ�Kð �é�®J
�̄ X 	á�
ªK. P@ð A �ªJ.�ð @ �	Qk. 	á�
ªJ.�ð �é�Ô 	g AëQ�KñK
 ø

	YË@ Õæ


�®�J�ÖÏ @ ¡	mÌ'@ð , �é�®J
�̄ X 	áK
Qå��«ð
�é�JÊ�K �éJ.�	� ù
 ë '¼' è ¡ 	k úÍ@ ' è'X ¡ 	k �éJ.�	�ð 'X' è ¡ 	k úÍ@ ' è' 	P ¡ 	k �éJ.� 	� 	̄ . �éJ
 	K A�K 	áK
Qå��«ð
�IÊ�Kð �é�®J
�̄ X 	á�
ªK. P@ð ©J.�ð @ �	Qk. 	á�
ªJ.�ð �Ô 	g úÍ@ �éJ
 	K A�K �èQå��« ©K. P@ð 	á�
�J�®J
�̄ Xð @ �	Qk. 	á�
ª���ð
	á�
ªJ.�ð �é�JÊ�K ' 	P' è ¡ 	k 	àñºK
 AîE. , @ �	Qk. 	á�
�J� 'X' è ¡ 	k AîE. 	àñºK
 ú


�æË@ @ 	Qk. B@ð , �éJ
 	K A�K 	áK
Qå��«ð
	á�
 	J�K @ð @ 	Qk. B@ è 	Yë 	áÓ @ �	Qk. 	á�
ªK. P@ð �éJ
 	K AÖ �ß '¼' è ¡ 	kð , ú


	G @ñ�K ©J.�ð �é�®J
�̄ X 	á�
�JÊ�Kð A �ª���ð @ �	Qk.
155 . �é �®J
�̄ X 	á�
�Ô 	gð

[7]

YªK. ù
 ëð , �ék. PX 	á�
�Ô 	gð A �ªK. P@   k. ð 'k. 'h ú
æ�ñ�̄ 	áÓ �èYg@ð É¿ A 	JÊªk. 	à@ ½Ë 	Y»ð
ø


	YË@ �� 	̄ B@ ñëð , �XðP Õæ
Ê
�̄ @ ú


	̄ ø

	YË@ �� 	̄ B@ AîD�AÖß
 	á�
�JÊË @ PAî 	DË @ ÈYªÖÏ 	á�
�JK
 	P@ñÖÏ @ 	á�
�KQK
 @YË@

�éK
AÓ ' 'H. �ñ�̄ A �	��
@ @ 	Yë ú

	̄ 	àA¿ ,PAî 	DË @ ÈYªÓ �èQK
@X ú


�æJ. 	Jk. 	á« , �éÒ�j. ÖÏ @ �èQºË@ ú

	̄ éK. A 	JÊ

��JÓ
	á�
�JÊ�Kð A �ªJ.�ð ��K
A�̄ X ©J.�ð @ �	Qk. Qå��« �éªK. P@ð �éK
AÓ AëQ�KñK
 ø


	YË@ ¡	mÌ'@ð , �ék. PX 	á�
ªK. P@ð A �ªK. P@ð
160

��K
A�̄ X ©K. P@ð @ �	Qk. 	á�
�JÊ�Kð �éªJ.� AëQ�KñK
 ø

	YË@ ¡	mÌ'@ð , �ék. PX 	á�
�JÊ�Kð A��J� 'h'H. �ñ�̄ð , �éJ
 	K A�K

�éK
AÓ �éJ.�	� ù
 ë '¼' è ¡ 	k úÍ@ ' è'X ¡ 	kð 'X' è ¡ 	k úÍ@ ' è' 	P ¡ 	k �éJ.�	�ð . �éJ
 	K A�K 	á�
�Ô 	gð A ��Ô 	gð
�Ô 	gð ��K
A�̄ X ©K. P@ð @ �	Qk. 	á�
�JÊ�Kð �éªJ.� úÍ@ �éJ
 	K A�K 	á�
�JÊ�Kð ©J.�ð ��K
A�̄ X ©J.�ð @ �	Qk. Qå��« �éªK. P@ð
�éK
AÓ A �	��
@ 	P' è ¡ 	k ©Ò�Jm.�'
 AîE. , @ �	Qk. 	á�
�J� 'X' è ¡ 	k 	àñºK
 AîE. ú


�æË@ @ 	Qk. BA 	̄ . �éJ
 	K A�K 	á�
�Ô 	gð
Qå��« �éª��� '¼' è ¡ 	k 	àñºK
ð , �éJ
 	K A�K 	á�
ªK. P@ð A�J
 	K AÖ �ßð �é�®J
�̄ X 	á�
�JÊ�Kð A �ª���ð @ �	Qk. 	á�
 	KAÖ �ßð �éªK. P@ð

165 	áK

	Yë 	àA¿ AÖÏ é�	K


@ 	á��
J. Ë @ 	áÓð . �éJ
 	K A�K 	á�
ªK. P@ð 	á�
 	J�K @ð �é�®J
�̄ X 	áK
Qå��«ð A �ª���ð @ 	Qk. B@ è 	Yë 	áÓ @ �	Qk.

141 X' è ] ¼' è TI, corr. T Ana. 144   k. ] ¡ 	k I. 146
�èQK
 @X ] in marg. I. 149

�ék. PX ]
�é�®J
�̄ X, above

�ék. PX I. 153 X' è ¡ 	k ] 	àñºK
 'X' è ¡ 	k TI. 156 ½Ë 	Y»ð ] ½Ë 	YËð TI.   k. ] ¡ 	k I. 	á�
�Ô 	gð A �ªK. P@ ]
	á�
ªK. P@ð A ��Ô 	g TI, LIIII Her. 159 ©J.�ð ] ©���ð TI, VII Her. 163 	P' è ] X' è TI, corr. T Ana.
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	á�
J. Ê �® 	JÖÏ @ ú

�GQK
 @X ø
 Q¢�̄ 	áÓ 	àñºK
 AÒ» , èA 	Jª 	�ñ 	̄ A 	JÓ �Y�®�K ø


	YË@ �� 	̄ B@ Q¢�̄ A 	K A¿ AªÔg. @ 	X @ 	á�
¢	mÌ'@
@ 	Qk. BAK. , �éJ
 	K A�K 	á�
�JÊ�Kð ��K
A�̄ X ©���ð @ 	Qk. @ �éªK. P@ð 	á�
�JK
AÓ Q¢�®Ë@ @ 	Yë PA� , h. ðQ�. Ë @ ½Ê 	̄ �èQK
 @X Q¢�̄

	�	� 	àñºK
 	à

@ ½Ë 	X 	áÓ I. m.�'
ð . @ �	Qk. 	áK
Qå��«ð �éK
AÓ PAî 	DË @ ÈYªÓ �èQK
@X Q¢�̄ 	àñºK
 AîE. ú


�æË@
	á�
K. ø


	YË@ ¡	mÌ'@ 	àñºK
ð , �éJ
 	K A�K 	á�
ªK. P@ð �Ô 	gð ��K
A�̄ X ©K. P@ð 	áK
 	Qk. ð 	Qk. �éK
AÓ �� 	̄ B@ �èQK
 @X Q¢�̄
�é�®J
�̄ X 	á�
�JÊ�K A ��Ô 	gð @ 	Qk. B@ è 	Yë 	áÓ @ �	Qk. 	á�
 	KAÖ �ßð 	á�
 	J�K @ PAî 	DË @ ÈYªÓ �èQK
 @Xð �èQK
 @YË@ è 	Yë 	Q»QÓ 170

. 	á��
J. 	K 	à

@ A 	KXP@ AÓ ½Ë 	Xð . ú


	G @ñ�K �IÊ�Kð

[8]

AÓ ©J
Ôg. ð ©ËA¢ÖÏ @ QK
XA �®Ó øQK
 A �	��
@ �èPñ�Ë@ è 	Yë É�JÓ ú

	̄ 	à


@ 	á��
J. 	JÊ 	̄ ½Ë 	X A 	Jª 	�ð Y�̄ 	X@ð

. �éÒ�j. ÖÏ @ �èQºË@ ú

	̄ A�	J��
K. AÓ ÈA�JÓ úÎ« AîD
	̄ 	�QªK


h. ðQ�. Ë @ ¡�ñK. QÖ �ß ú

�æË@ �èQK
 @YË@ð , è 	Q»QÓ Èñk 'X k. 'H. '@ �èQK
 @X PAî 	DË @ ÈYªÓ �èQK
 @X 	áº�JÊ 	̄

ÈYªÓ �èQK
 @X 	Q»QÓ ù
 ë ú

�æË@ ' è �é¢�® 	JK. 	à@QÖß
 	áK
Q¢�̄ h. Q	m� 	'ð .   �é¢�® 	K Èñk 'X'h'H. ' 	P �èQK
 @X 175

ú

�æ¢�® 	K AÒëð , X ð 'H. ú


�æ¢�® 	K úÎ« ø

	YË@ ©£A�®�JËAK. QÖß
 AÒëYg@ .PAî 	DË @ 	�	� �èQK
 @X 	àA¾Óð PAî 	DË @

�HYjJ
 	̄ , h' è' ' 	P ¡ 	k ñëð , h. ðQ�. Ë @ �èQK
 @X 	Q»QÖß. QÖß
 Q 	kB@ð . X' è'H. ¡ 	k ñëð , @ñ�J�B@
. h ð ' 	P AÒëð , 	á�
J. Ê �® 	JÖÏ @ ú


�æ¢�® 	K
@ 	Qk. @ ©Ó PAî 	DË @ ÈYªÓ �èQK
 @X 	áÓ �éÒJ
�®�J�ÖÏ @ �èQºË@ ú


	̄ ©Ê¢�
 AÓ 	á��
J. 	K 	à

@ Bð@ A 	KY��̄ 	áºJ
Ëð

	�	� �èQK
 @X © 	�ð éª 	�ð �éÒJ
�®�J�ÖÏ @ �èQºË@ ú

	̄ �� 	̄ B@ �	à


C 	̄ . h. ðQ�. Ë @ ¡�ð ú


	̄ QÖ �ß ú

�æË@ �èQK
 @YË@ 180

�é¢�® 	K ù
 ëð ,PAî 	DË @ ÈYªÓ �èQK
 @X I. ¢�̄ úÎ« 	PAm.�
�' ú


�æË @ �èPñ�Ë@ è 	Yë ú

	̄ �éÒJ
�®�J�ÖÏ @  ñ¢	mÌ'@ð ,PAî 	DË @

AªK. P AÒëð , X'h 'H. ' 	P ú
æ�ñ�̄ 	áÓ �èYg@ð É¿ �	à

@ 	á��
J. Ë @ 	áÔ 	̄ ,PAî 	DË @ 	�	� QK
@ðX QK
A 	¢ 	� ù
 ë , è

,PAî 	DË @ ÈYªÓ �èQK
 @X AªK. P AÒëð , X k. 'H. '@ ú
æ�ñ�̄ 	áÓ �èYg@ð É¿ ©Ó ©Ê¢�
 , ÉK
AÖÏ @ ½Ê 	®Ë @ �èQK
 @X
	�	� éÒ��®K
 'X'h'H. ' 	P �èQK
 @X ú


	̄ 'X'H. ¡ 	k �	à

B , AêªÓ 	àAK. Q 	ªK
ð AêªÓ AÒ�Ë@ 	àA¢ ��ñ�JK
ð

. è �é¢�® 	K úÎ« �éÖß
A�̄ AK
 @ð 	P úÎ«ð 	á�
 	®�	JK. , h'  ¡ 	k ñëð ,Q¢�®Ë@ 185

�ñ�̄ð '¼'H. �ñ�̄ AÒëð , 	á�
�JK
ðA���Ó 	á�
�ñ�̄ h. ðQ�. Ë @ ¡�ñK. QÖ �ß ú �æË@ �èQK
 @YË@ 	áÓ É� 	® 	J 	̄
	à '¨ ú


�æ¢�® 	Kð 'È '¼ ú

�æ¢�® 	K 	à


@ A�	J��
K. Y�̄ A�	J» 	XA 	̄ . ¨' è'�'È ¡ 	kð ' 	à' è'Ð'¼ ¡ 	k 	Q�
m.�

	'ð , È'X
'¼ �é¢�® 	K �	à


@ ú �æk , @ñ� YªK. PAî 	DË @ ÈYªÓ �èQK
@X ú


�æJ. 	Jk. 	á« AëYªK. ú

�æË@ , �éK
 	P@ñ�JÖÏ @ QK
 @ðYË@ AîE. QÖ �ß

. ¨ �é¢�® 	JË �éÊK. A �®Ó 'È �é¢�® 	Kð , �èñ�®ËAK. 	à �é¢�® 	JË �éÊK. A �®Ó ù
 ë

168 	àñºK
 AîE. ] AîE. 	àñºK
 I. 169
�éJ
 	K A�K 	á�
ªK. P@ð �Ô 	gð ] ú


	G @ñ�K �Ô 	gð TI, secundas XLV Her.

172
�éÒ�j. ÖÏ @ �èQºË@ ú


	̄ . . . 	X @ð ] cited Mas, A 	Jª 	�ð: A 	J 	® 	�ð Mas, 	à

@ omit. Mas, A �	��
@: é�	K @ Mas, ÈA�JÓ omit.

Mas. 174 	áº�JÊ 	̄
] 	áºJ
Ê 	̄

I. 176 	àA¾Óð ] 	àA¾ 	̄ð I. X ð 'H. ] X' ð' H. TI, corr. Ana. 178 h ð ' 	P ]

X' ð' H. T. 182 X' h 'H. ' 	P ] X k. ' HP I. 183 X k. 'H. ' @ ] X' h' H' @ I. 186 	á�
�JK
ðA���Ó ] 	á�
K
ðA���Ó T.

AÒëð ] AÒëð AÒëð I. �ñ�̄
] A�ñ�̄

TI. 187 ¨' è' �' È ] ©îD�� TI. 	à '¨ ] 	P' ¨ TI, corr. Ana. 188 QÖ �ß ]

QÖß
 I. 189 	à ] H. TI, corr. Ana.
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190 h. QK. 	àñº�K 'X'È �ñ�̄ �	à

@ 	á��
J. Ë @ 	áÔ 	̄ , �HñmÌ'@ h. QK. ¼'H. �ñ�̄ �	à


@ Bð@ A 	Jª 	�ð 	ám� 	' 	à@

h. QK. úÎ« øñ�Jm��' 'X' 	à �ñ�̄ð ÉÒmÌ'@ h. QK. úÎ« øñ�Jm��' '¨'H. �ñ�̄ ÈA�JÖÏ @ @ 	Yë úÎ«ð , 	à@ 	Q�
ÖÏ @
AK
 @ð 	QË @ð ¨C 	�B@ ø
 ðA�Ó ' ' è'¼ �IÊ�JÓ 	àA¿ ,  'È ' '¼  ñ¢ 	k A 	JÊ�ð 	à@ A�	JºË . �éÊJ. 	��Ë@
'H. ' è'¼ �éK
ð@ 	P ú


	æ«@ , �éJ
�̄ AJ. Ë @ AK
 @ð 	QË @ð ,  ' è'È �éK
ð@ 	QË �éK
ðA�Ó ' ' è'¼ �éK
ð@ 	Q 	̄ ,  ' è'È �IÊ�JÖÏ
	Q»QÓ Y	J« �éK
ð@ 	QË @ è 	Yë �I	KA¿ 	XA 	̄ . AêË �éÊK. A �®ÖÏ @ AK
 @ð 	QÊËð 	�ªJ. Ë AîD	�ªK. �éK
ðA�Ó , X' è'È �éK
ð@ 	Pð

195 h. ðQ�. Ë @ 	áÓ Yg@ð É¿ ©Ó PAî 	DË @ ÈYªÓ �èQK
 @X 	áÓ ©Ê¢�� ú

�æË@ A �	��
@ ú
æ��®Ë@ �	à


A 	̄ ,PAî 	DË @ ÈYªÓ �èQK
 @X

A�	K

A¿ , ú
æ��®Ë @ è 	Yë 	áÓ �èYg@ð P@Y�®Ó A 	KYg. ð 	ám� 	' 	àA

	̄ . 	�ªJ. Ë AîD	�ªK. �éK
ðA�Ó AëA 	Jª 	�ð ú

�æË@

. ©ËA¢ÖÏ @ 	áÓ éJ. Ê£ ú

	̄ A�	J» AÓ ½Ë 	X ©Ó A 	JÊ ��k Y�® 	̄ , H. 'Ð �ñ�̄ P@Y�®Ó A 	KYg. ð

@ 	Qk. B@ �	à

@ A�	J��
K. Y�̄ 	XA 	̄ . ' 	¬'  ¡ 	k 	áºJ
Ëð , ' è'¼ ¡ 	k úÎ« @ �XñÔ« '  �é¢�® 	K 	áÓ h. Q 	j	J 	̄

�èQK
 @YË@ Q¢�̄ 	�	� ñëð , ¼'  ¡ 	k 	àñºK
 @ �	Qk. 	á�
�J� PAî 	DË @ ÈYªÓ �èQK
 @X Q¢�̄ 	�	� AîE. ú

�æË@

200 ¡ 	kð , �éJ
 	K A�K �èQå��« ©J.�ð �é�®J
�̄ X 	á�
�JÊ�Kð �I�ð @ �	Qk. 	á�
�J�ð �é�Ô 	g , h. ðQ�. Ë @ ¡�ð ú

	̄ QÖ �ß ú


�æË@
@ �	Qk. 	áK
Qå��«ð �é�J� ,PAî 	DË @ ÈYªÓ �èQK
 @X 	Q»QÓð �èQK
@YË@ è 	Yë 	Q»QÓ 	á�
K. ø


	YË@ ¡	mÌ'@ ñëð ,  ' è
�èQK
 @YË �éK
 	P@ñÖÏ @ �èQK
 @YË @ Q¢�̄ 	�	� ñëð , ¼' è ¡ 	kð , �éJ
 	KA�K 	á�
�Ô 	gð 	àAÖ �ßð �é�®J
�̄ X 	á�
�JÊ�Kð øYg@ð
	àñºK
 , È '¼ ú


�æ¢�® 	JK. QÖ �ß ú

�æË@ ú


	æ«@ , H. Q�®ªË@ �@Pð �HñmÌ'@ �@P úÎ« Õæ�Q�K ú

�æË @ PAî 	DË @ ÈYªÓ

. ÐñÊªÓ '¼' ' è �IÊ�JÔ 	̄ , ú

	G @ñ�K ©J.�ð �é�®J
�̄ X 	á�
�JÊ�Kð ©���ð @ �	Qk. 	á�
ªJ.�ð �é�JÊ�K @ 	Qk. B@ è 	Yë 	áÓ

205 �HYg éÊ�JÓ ú

	̄ ' è'  ©K. QÓ é 	JÓ �ñ�®	JÓ éÊ�JÓ ú


	̄ ' '¼ ©K. QÓ ' è'¼ ¡ 	k úÍ@ A 	J 	® 	�@ 	àA
	̄

AÒî 	DÓ ùÒ 	¢ªË@ �èQK
 @YË@ Õæ��®�Kð , 	àAª£A�®�JK
 	á�
�KQK
 @X É¿ �	à

@ B

�
@ . è' 	¬ ¡ 	k úÎ« ' 	¬'¼ ¡ 	k É 	� 	̄

ú

	̄ ùÒ 	¢ªË@ �èQK
 @YË@ Q¢�̄ 	�	� ©K. QÓ �	à


A 	̄ , 	á�
�KQK
 @YË@ P@Y�®Ó 	àA¿ Õ» , 	á�
 	®�	JK. øQ 	ª�Ë@ �èQK
 @YË@

Q¢�̄ 	�	� ©K. QÓ é 	J« �HYm�'
 [ éÊ�JÓ ú

	̄ ] AÒîE
 	Q»QÓ 	á�
K. ø


	YË@ ¡	mÌ'@ [©K. QÓ] é 	JÓ �ñ�® 	JÓ éÊ�JÓ
, X'H. ¡ 	k A 	JÊ�ð 	à@ QK
 @ðYË@ è 	Yë ú


	̄ A 	JÊª 	̄ AÓ ÈA�JÓ úÎ« A�	K

@ ½Ë 	Xð . éÊ�JÓ ú


	̄ øQ 	ª�Ë@ �èQK
 @YË@
210

�éK
ð@ 	P �I	KA¿ 	XA 	̄ . øQ 	ª�Ë@ �èQK
 @YË@ ú

	̄ ' è 	Q»QÖß. QÖß
 ©£A�®�JË @ ù
 ª 	�ñÓ 	á�
K. É�ñK
 ø


	YË@ ¡	mÌ'@ 	àA¿
ù
 ¢ 	k 	áÓ ©Ò�Jm.�'
 AÖÏ ð� A�Ó , �éK
ð@ 	QË @ Q�KñK
 ø


	YË@ ¡	mÌ'@ ñëð , éÊ�JÓ ú

	̄ 'X'  ¡ 	k �	à


A 	̄ , �éÖß
A�̄ ' ' è'X

�èQK
 @YË@ Q¢�̄ 	�	� [©K. QÓ] É 	� 	̄ 	àñºK
 	à

@ ½Ë 	X 	áÓ I. j. J
 	̄ . éÊ�JÓ ú


	̄ Yg@ð É¿ 'X' è ð ' è' 
	á�
K. ø


	YË@ ¡	mÌ'@ [©K. QÓ] Y	J« , AëP@Y�®Ó 	àA¿ Õ» ,[ éÊ�JÓ ú

	̄ ] 	á�
 	®�	JK. PAî 	DË @ ÈYªÓ �èQK
 @X Õæ��®�K ú


�æË@
ÈYªÓ �èQK
@X Q¢�̄ 	�	� 	àñºK
 AîE. ú


�æË @ @ 	Qk. B@ 	áÓ 	Qk. �éK
AÒ�J�ð 	Ë@ �é�JÊ�K [ éÊ�JÓ ú

	̄ ] AÒîE
 	Q»QÓ

215 . @ �	Qk. 	á�
�J� PAî 	DË @

190 ¼' H. ] Që' ½K TI, corr. Ana. 196
�éK
ðA�Ó ] A�K
ðA�Ó I, ðA�Ó T. 200 	á�
�J�ð �é�Ô 	g ] 	á�
�Ô 	gð �é�Ô 	g

TI, LXV Her. 203 �HñmÌ'@ ] @ 	Pñm.Ì'@ TI, piscium Her. 205 �HYg ] �HYg I. 208 éÊ�JÓ ú

	̄ . . . �ñ�® 	JÓ ] si

tetragonus distantie centrorum subtrahatur Her; ©K. QÓ, éÊ�JÓ ú

	̄
omit. TI. 209 X' H. ] Y£ TI, corr.

Ana. 210
	XA 	̄

] @ 	XA 	̄
I. 211 ð� A�Ó ] A�K
ðA�Ó TI. 212 ©K. QÓ ] omit. TI. 213 éÊ�JÓ ú


	̄
] omit. TI. ©K. QÓ ]

omit. TI. 214 éÊ�JÓ ú

	̄
] omit. TI.
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T has 	P and 	à transposed. There are also two extraneous objects neither mentioned in

the text nor reproduced here. A point
�� is placed between point Ð and the intersection

of lines H.   and ¼ è, and a line joins it to point  .

è 	Yë 	áÓ @ �	Qk. 	àñªJ.�ð �é�JÊ�K ñë , èA 	Jª 	�ñ 	̄ A 	JÓ �Y�®�K AÓ I. �m�'
 A �	��
@ ¼' è ¡ 	k �	à

@ ÉJ. �̄ 	áÓð

�éK
AÒ�J�ð 	Ë@ �é�JÊ�K ñëð , É 	� 	®Ë@ ½Ë 	X úÍ@ A 	J 	® 	�@ 	à@ , ú

	G @ñ�K ©J.�ð �é�®J
�̄ X 	àñ�JÊ�Kð ©���ð @ 	Qk. B@

@ 	Qk. B@ è 	Yë 	áÓ @ �	Qk. 	àñªK. P@ð �éJ
 	K AÖ �ß ñëð , è' 	¬ ¡ 	k Y	J« ' 	¬'¼ ¡ 	k É 	� 	̄ A 	JË É�k , 	Qk.
©���ð @ �	Qk. 	á�
ªJ.�ð �é�JÊ�K 	áÓ ½Ë 	X A 	J��® 	K @ 	XA 	̄ . �éJ
 	K A�K 	àñªK. P@ð 	àA�J 	��K @ð �é�®J
�̄ X 	àñ�Ô 	gð 	àA�J 	��K @ð
	àñªK. P@ð �I�ð @ �	Qk. 	àðQå��«ð �éªK. P@ ñëð , ù


�®K. AÓ 	�	� A 	K 	Y 	g@ð ú

	G @ñ�K ©J.�ð �é�®J
�̄ X 	á�
�JÊ�Kð 220

�èQå��« A 	J�K @ð �é�®J
�̄ X 	àðQå��«ð �IÊ�Kð @ �	Qk. Qå��« A 	J�K @ ' 	¬' è ¡ 	k 	àA¿ , �é 	JK
A�K 	àðQå��«ð �Ô 	gð �é�®J
�̄ X
ú


	GAÖ �ßð �é�®J
�̄ X 	àñ�JÊ�Kð øYg@ð @ �	Qk. 	àðQå��«ð �é�J� AîE. ' ' è ¡ 	k �	à

@ A 	Jª 	�ð ú


�æË@ @ 	Qk. BAK. , �éJ
 	K A�K
�éK
AÓ , �éÖß
A �®Ë @ ' ' 	¬' è �éK
ð@ 	P Q�KñK
 ø


	YË@ ¡	mÌ'@ ñëð ,  ' è ¡ 	k AîE. ú

�æË @ @ 	Qk. BA 	̄ . �éJ
 	K A�K 	àñ�Ô 	gð

�ñ�®Ë@ð , I. K
Q�®�JËAK. �é�®J
�̄ X 	á�
�JÊ�Kð @ �	Qk. 	áK
Qå��«ð �é�Ô 	g A �	��
@ ' 	¬' è ¡ 	k 	àñºK
 AîE. @ �	Qk. 	áK
Qå��«ð
Èñk ú


�æË@ �èQK
 @YË@ 	àñº�K AîE. ú

�æË@ h. PYËAK. , �é�®J
�̄ X 	á�
ªK. P@ð �ék. PX 	á�
�Ô 	gð A ��Ô 	g AëQ�KñK
 ú


�æË@ 225

�éK
ð@ 	P É�JÓ ù
 ë ú

�æË@ , 	¬' ' è �éK
ð@ 	Q 	̄ . �ék. PX 	á�
�J�ð �éK
AÒ�JÊ�K �éK
ð@ 	QË @ Õç'
A �®Ë @ ' 	¬' ' è �IÊ�JÓ

�éK
AÒ�JÊ�K 	á�
�JÖß
A�̄ 	á�
�JK
ð@ 	P 	àñº�K AîE. ú

�æË @ h. PYËAK. , �éÖß
A�̄ A �	��
@ 'H. ' è'  �éK
ð@ 	P �I	KA¿ 	X@ , H. ' è' 	¬

©K. P@ 	àñºK
 AîE. ú

�æË @ h. PYËAK. ð , �é�®J
�̄ X 	á�
ªK. P@ð �ék. PX 	á�
�Ô 	gð A ��Ô 	g 	àñº�K AîE. , �ék. PX 	á�
�J�ð

. �é�®J
�̄ X 	á�
�Ô 	gð �ék. PX 	áK
Qå��«ð A �ªJ.� �éK
ð@ 	QË @ è 	Yë 	àñº�K AîE. , �ék. PX 	á�
�J�ð �éK
AÒ�JÊ�K �éÖß
A�̄ AK
 @ð 	P
	áK
Qå��«ð A �ªJ.� A �	��
@ 'Ð'H. �ñ�̄ �HPA� ,PAî 	DË @ ÈYªÓ �èQK
 @X 	Q»QÓ Y	J« �éK
ð@ 	QË @ è 	Yë �I	KA¿ AÖÏð 230

. �ék. PX 	á�
�J�ð �éK
AÒ�JÊ�K PAî 	DË @ ÈYªÓ �èQK
 @X AîE. ú

�æË @ h. PYËAK. ,[ �é�®J
�̄ X 	á�
�Ô 	gð] �ék. PX

216 ¼' è ] ¡ë TI, corr. Ana. 217 É 	� 	®Ë@ ] É 	� 	®ÖÏ @ I. 224 I. K
Q�®�JËAK. . . . �é�Ô 	g ] partes LV cum punctis

fere LIX Her. 225 AëQ�KñK
 ] AëQ�Kñ�K I. 226
�éK
AÒ�JÊ�K ] �éK
AÒ�JÊ�Kð I. 227

	X @ ] @ 	X @ I. 228 	àñº�K ] 	àñºK
 I. 229
�éK
AÒ�JÊ�K ]

�éK
AÒ�JÊ�Kð I. è 	Yë ] è 	Yë in marg. T. 231
�é�®J
�̄ X 	á�
�Ô 	gð ] omit. TI, cum puncta L Her.
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ú

�æË@ h. ðQ�. Ë @ 	áÓ Yg@ð É¿ �	à


@ �éÒ�j. ÖÏ @ �èQºË@ ú


	̄ A�	J��
K. AÓ É�JÓ úÎ« ½Ë 	X 	áÓ A 	JË 	á��
J. �K Y�® 	̄

©Ó ©Ê¢�
 �éÒJ
�®�J�ÖÏ @ �èQºË@ © 	�ð ú

	̄ , 	à@ 	Q�
ÖÏ @ð �éÊJ. 	��Ë@ð ÉÒmÌ'@ð �HñmÌ'@ ú


	æ«@ , @ñ�J�B@ �é¢�® 	K Y 	J«
.PAî 	DË @ ÈYªÓ �èQK
 @X 	áÓ �é�®J
�̄ X 	á�
�Ô 	gð �ék. PX 	áK
Qå��«ð ©J.�Ë@ è 	Yë

235 ' 	à' è ú

	̄ ' è'¼ ¡ 	k , ÈA�JÖÏ @ @ 	Yë úÎ« @ 	Yë 	áÓ ÉîD�@ Èñ�®K. ½Ë 	X 	á��
J. 	K 	à


@ A 	J 	JºÖß
 	àA¿ Y�̄ð

½Ë 	X A 	JÒ��̄ 	ám� 	' @ 	XA 	̄ . 	Qk. �éK
AÒ�J�ð 	Ë@ �é�JÊ�K 'X' è ú

	̄ ' è'H. ¡ 	kð 'X' è ú


	̄ ' è'H. ¡	mÌ ð� A�Ó
' 	¬' è ¡ 	k É�JÖß. ' 	à' è ¡ 	k úÎ« É 	� 	®K
 ' è'¼ ¡ 	k �	áºË . A �ÓñÊªÓ ' 	à' è ¡ 	k 	àA¿ , è'¼ ¡ 	k úÎ«
' 	¬ �é¢�® 	K Y 	J« ú


�æË@ �éÖß
A �®Ë @ �éK
ð@ 	QË @ð , ÐñÊªÓ ' è'  ¡ 	kð . ÐñÊªÓ A �	��
@ ' 	¬' è ¡	m 	̄ , 	á�
�KQÓ
. �éÓñÊªÓ @ �	X @ ' 	¬' ' è �éK
ð@ 	Q 	̄ , �éÓñÊªÓ

[9]

240 ú �æk 	á�
g. QK. ú
æ�ñ�̄ h. ðQ�. Ë @ ½Ê 	̄ �èQK
 @X 	áÓ ¼'H. �ñ�̄ �èPñ�Ë@ è 	Yë É�JÓ ú

	̄ A �	��
@ © 	�	J 	̄

�é¢�® 	K 	àñº�K Q¢�®Ë@ úÎ« ¡�® 	JË @ è 	Yë �éËAJ. �̄ð , �ñ�®Ë@ �@P 'È �é¢�® 	Kð ñËYË@ �@P '¼ �é¢�® 	K 	àñº�K
�èQK
 @X 	áÓ 'Ð'H. �ñ�̄ P@Y�®Ó Õ» A�	J��
K. 	à@ A�	K


@ 	á��
J. Ë @ 	áÔ 	̄ . @ 	Pñm.Ì'@ �@P '¨ �é¢�® 	Kð Y�B@ �@P ' 	à

h. ðQ�. Ë @ 	áÓ Yg@ð É¿ �éÒJ
�®�J�ÖÏ @ �èQºË@ ú

	̄ ©Ê¢�
 AîD


	̄ ú

�æË @ 	àAÓ 	PB@ A 	J 	̄Q« Y�̄ A�	K


A 	̄ ,PAî 	DË @ ÈYªÓ

. AëA 	Jª 	�ñ 	̄ A 	JÓ �Y�®�K ú

�æË@

245 X@X 	QK
 ' è'¼ ¡ 	kð , 	àA¿ AÓ úÎ« AÒëP@Y�®Ó ù

�®J. K
 ' è'  ' '¼ ù
 ¢ 	k �	à


@ A �	��
@ 	á��
J. Ë @ 	áÓð

úÎ« Õæ�Q�K ú

�æË @ ,PAî 	DË @ ÈYªÓ �èQK
 @YË �éK
 	P@ñÖÏ @ �èQK
 @YË@ Q¢�̄ 	�	� �	à


@ A�	J��
K. Y�̄ A�	K


@ ÉJ. �̄ 	áÓ . èP@Y�®Ó

	àñªK. P@ð 	àA�J 	��K @ð �é�®J
�̄ X 	àðQå��«ð ©���ð @ �	Qk. 	àñ	KAÖ �ßð [ �é�J�] ñë , ñËYË@ �@Pð �ñ�®Ë@ �@P
, É 	� 	®Ë @ @ 	Qk. @ A 	JÒ��̄ 	àA

	̄ , @ �	Qk. 	á�
�J� PAî 	DË @ ÈYªÓ �èQK
@X Q¢�̄ 	�	� 	àñºK
 AîE. ú

�æË@ @ 	Qk. BAK. , �éJ
 	K A�K

©���ð @ �	Qk. 	á�
 	KAÖ �ßð �é�J� úÎ« AëA 	JÒ��̄ 	à@ ú

	æ«@ , è'¼ ¡ 	k úÎ« , 	Qk. �éK
AÒ�J� 	Ë@ �é�JÊ�K ù
 ëð

250 @ �Yg@ð ' è' 	¬ ¡ 	k úÎ« ' 	¬'¼ ¡ 	k É 	� 	̄ A 	JË h. Q 	k , �éJ
 	K A�K 	á�
ªK. P@ð 	á�
 	J�K @ð �é�®J
�̄ X 	áK
Qå��«ð
�é�J� 	áÓ ½Ë 	X A 	J��® 	K @ 	X @ð . �éJ
 	K A�K �èQå��« �Ô 	gð �é�®J
�̄ X 	á�
�JÊ�Kð A �ªJ.�ð @ 	Qk. B@ è 	Yë 	áÓ @ �	Qk. 	á�
ªK. P@ð
�éªK. P@ ñëð , ù


�®J. K
 AÓ 	�	� A 	K 	Y 	g@ð , �éJ
 	K A�K 	á�
ªK. P@ð 	á�
 	J�K @ð �é�®J
�̄ X 	áK
Qå��«ð ©���ð @ �	Qk. 	á�
 	K AÖ �ßð
	áK
Qå��«ð 	á�
 	J�K @ ' è' 	¬ ¡ 	k A 	JË h. Q 	k , �éJ
 	K A�K 	àñ ��«ð ©J.�ð �é�®J
�̄ X 	àñ�Ô 	gð 	àA�J 	��K @ð @ �	Qk. 	àñªK. P@ð
�é�J� ' è'  ¡ 	k AîE. 	àA¿ ú


�æË @ @ 	Qk. BAK. , I. K
Q�®�JËAK. �éJ
 	K A�K Qå��« �é�JÊ�Kð �é�®J
�̄ X 	áK
Qå��«ð �I�ð @ �	Qk.
255 ' è'  ¡ 	k AîE. 	àñºK
 ú


�æË@ @ 	Qk. BA 	̄ . �éJ
K. A�K 	á�
�Ô 	gð 	àAÖ �ßð �é�®J
�̄ X 	á�
�JÊ�Kð øYg@ð @ �	Qk. 	áK
Qå��«ð
	àAÖ �ßð 	Qk. ð 	Qk. �éK
AÓ ' 	¬' è ¡ 	k 	àñºK
 AîE. , @ �	Qk. 	áK
Qå��«ð �éK
AÓ �éÖß
A �®Ë @ �éK
ð@ 	QË @ Q�KñK
 ø


	YË@
h. PYËAK. , �é�®J
�̄ X 	áK
Qå��«ð 	àAÖ �ßð �ék. PX Qå��« �é�Ô 	gð �éK
AÓ AëQ�KñK
 ú


�æË @ �ñ�®Ë@ð , �é�®J
�̄ X 	áK
Qå��«ð

235 A 	J 	JºÖß
] A 	JºÖß
 I. 239
�éÓñÊªÓ . . . �éK
ð@ 	Q 	̄

] cited Mas, 	á��
J. 	K 	à

@ A 	KXP@ AÓ ½ËXð add. Mas. 240 ¼' H. ] ¼' È

TI, bk Her, corr. T. 241 2 	àñº�K ] 	àñºK
 I. 247 ñë ] ñëð TI. 	àñ	KAÖ �ßð �é�J� ] 	àñ	KAÖ �ß TI, LXXXVI (36 in

one ms) Her. 	àA�J 	��K @ð ] 	àAJK @ð I. 249 	Qk. ] ð�
	Qk. I. 250 	áK
Qå��«ð ] 	á�JÊKð T, 	á��JÊKð I. @ �Yg@ð ] øYg@ð TI.

252 ñëð ] ñëð ñëð I.
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	àñº�J 	̄ . �ék. PX 	á�
�J�ð �éK
AÒ�JÊ�K �éK
ð@ 	QË @ Õç'
A �®Ë @ ' 	¬' ' è �IÊ�JÓ Èñk ú

�æË@ �èQK
 @YË@ AîE. 	àñº�K ú


�æË@
, �é�®J
�̄ X 	áK
Qå��«ð 	àAÖ �ßð �ék. PX Qå��« �é�Ô 	gð �éK
AÓ , H. ' è' 	¬ �éK
ð@ 	P É�JÓ ù
 ë ú


�æË@ , 	¬' ' è �éK
ð@ 	P
©K. P@ AîE. 	àñºK
 ú


�æË@ h. PYË@ A�ÓA 	̄ . �ék. PX 	á�
�J�ð �éK
AÒ�JÊ�K 	á�
�JÖß
A�̄ 	á�
�JK
ð@ 	P 	àñº�K AîE. ú

�æË@ h. PYËAK. 260

�I	KA¿ AÖÏð . �é�®J
�̄ X 	á�
ªK. P@ð ©K. P@ð �ék. PX 	á�
�Ô 	gð ©J.� 	àñº�J 	̄ , �ék. PX 	á�
�J�ð �éK
AÒ�JÊ�K �éÖß
A�̄ AK
 @ð 	P
©K. P@ð �ék. PX 	á�
�Ô 	gð A �ªJ.� A �	��
@ 'Ð'H. �ñ�̄ �HPA� ,PAî 	DË @ ÈYªÓ �èQK
 @X 	Q»QÓ Y	J« �éK
ð@ 	QË @ è 	Yë

. �é�®J
�̄ X 	á�
ªK. P@ð
	áK
Qå��«ð ©J.� Aî�	E


@ A�	J��
K. ú


�æË@ , @ñ�J�B@ ú

�æ¢�® 	K Y 	J« ú


�æË @ h. ðQ�. Ë @ ©ËA¢Ó ½Ë 	X 	áÓ A 	J��® 	K 	àA
	̄

, �é�®J
�̄ X 	á�
�Ô 	gð ©K. P@ð A�	K AÓ 	P 	áK
Qå��«ð ©��� , �éJ
�̄ AJ. Ë @ 	àAÓ 	PB@ A 	JË h. Q 	k , �é�®J
�̄ X 	á�
�Ô 	gð �ék. PX 265

Pñ�JË @ð ñËYË@ ú

	æ«@ , h. ðQ�. Ë @ è 	Yë 	áÓ Yg@ð É¿ �éÒJ
�®�J�ÖÏ @ �èQºË@ ú


	̄ ©Ê¢�
 [AîD
	̄ ] ú

�æË@ ù
 ëð

�ñ�®Ë@ ú

	æ«@ , �éJ
�̄ AJ. Ë @ h. ðQ�. Ë @ �éªK. PB@ è 	Yë 	áÓ Yg@ð É¿ �	à


@ 	á��
J. Ë @ 	áÓð . H. Q�®ªË@ð Y�B@ð

	àñª��� ñëð , Yg@ð ©K. P �ñ�̄ 	áÓ ù

�®J. �K ú


�æË@ 	àAÓ 	PB@ ú

	̄ ©Ê¢�
 , 	àA£Qå�Ë @ð @ 	Pñm.Ì'@ð ø
 Ym.Ì'@ð

. �éÒ�j. ÖÏ @ �èQºË@ ú

	̄ è A�	J��
K. AÖÏ �� 	̄ @ñÓ ½Ë 	Xð . �é�®J
�̄ X Qå��« �é�J�ð A�	K AÓ 	P 	àñ�JÊ�Kð 	àA 	J�K @ ù
 ëð , A�	K AÓ 	P

[10]

A 	JÓ �Y�®�K ú

�æË@ Aî 	EAJ
«AK. ©ËA¢ÖÏ @ ½Ê�K A �	��
@ �éÊK
AÖÏ @ �èQºË@ ú


	̄ 
A�J
î �DK
 Éë Q 	¢	J 	K 	à


@ ½Ë 	X ©J. ��K
ð 270

. �èPñ�Ë@ è 	Yë ú

	̄ AÓ úÎ« h. ðQ�. Ë @ ©ËA¢Ó 	áÓ AëA 	KQ» 	Y 	̄

H. A�J» ú

	̄ AëA 	JÊÒª�J�@ ú


�æË @ PAî 	DË @ ÈYªÖÏ �éK
 	P@ñÖÏ @ �èQK
 @YË@ ÈA�JÖÏ @ ��K
Q£ úÎ« A �	��
@ ÉÒª�J�	�ð
	á« �èQK
 @YË@ è 	Yë ú


	̄ ú
ÍAÒ ��Ë@ I. ¢�®Ë@ ¨A 	®�KP@ð . �XðP �èQK
 	Qm.�'. QÖ �ß ú

�æË@ �èQK
 @YË@ ú


	æ«@ , ù
 ¢�j. ÖÏ @
AëYªK. ú


�æË@ ,PAî 	DË @ ÈYªÖÏ �éK
 	P@ñÖÏ @ QK
 @ðYËAK. Õæ�QK
 ø

	YË@ �� 	̄ B@ A�Ó@ð . �ék. PX 	àñ�JÊ�Kð �I� �� 	̄ B@

	àñªK. P@ð �Ô 	gð ��K
A�̄ X ©K. P@ð 	à@ 	Qk. ð 	Qk. �éK
AÓ èQ¢�̄ 	�	� �	à

A 	̄ , è A�	J��
J. 	̄ A 	JÓ �Y�®�K ø


	YË@ YªJ. Ë @ 275

	á�
K. ø

	YË@ ¡	mÌ'@ 	àñºK
ð , 	Qk. 	á�
�J� PAî 	DË @ ÈYªÓ �èQK
 @X Q¢�̄ 	�	� 	àñºK
 AîE. ú


�æË@ @ 	Qk. BAK. , �éJ
 	K A�K
�é�®J
�̄ X 	á�
�JÊ�Kð A ��Ô 	gð @ 	Qk. B@ è 	YîE. @ �	Qk. 	á�
 	K AÖ �ßð 	á�
 	J�K @ PAî 	DË @ ÈYªÓ �èQK
 @Xð �� 	̄ B@ @ 	Yë �èQK
 @X 	Q»QÓ

. ú

	G @ñ�K �IÊ�Kð

	Q»QÓ Èñk 'X'h'H. ' 	P h. ðQ�. Ë @ �èQK
 @Xð , è 	Q»QÓ Èñk 'X k. 'H. '@ PAî 	DË @ ÈYªÓ �èQK
@X Éªj. 	J 	̄

'X �é¢�® 	K 	áÓ Aî�	E

A¿ , ú
ÍAÒ ��Ë@ I. ¢�®Ë@ �Iª 	�ð Y�̄ ' è �é¢�® 	K �I	KA¿ 	X@ , �èQºË@ �é»Qk Ñ �ëñ�J 	Kð .   280

�� 	̄ B@ QK
 @ðX 	áÓ �èQK
 @YË@ è 	Yë 	áÓ Bð@ Õæ�Q 	Kð . @ �é¢�® 	K úÍ@ Õç�' 'H.
�é¢�® 	K úÍ@ Õç�' 'k. �é¢�® 	K ñm� 	'

	áÔ 	̄ . 	à'h'Ð' 	P È'h'¼' 	P ú
æ�ñ�̄ A 	Kñº�JËð . h ð ' 	P ú

�æ¢�® 	K AÒëð , 	á�
J. Ê �® 	JÖÏ @ ú


�æ¢�® 	JK. 	à@QÖ �ß 	á�
�ñ�̄

'¼ �é¢�® 	K úÎ«ð ' 	P �é¢�® 	K úÎ« AÓ 	àA¿ , È'h'¼' 	P �ñ�̄ © 	�ð éª 	�ð �� 	̄ B@ 	àA¿ ú �æÓ é�	K

@ 	á��
J. Ë @

258 	àñº�J 	̄
] 	àñºJ
 	̄

I. 259
�ék. PX ] omit. I. 261 	àñº�J 	̄

] 	àñºJ
 	̄
I. 266 ©Ê¢�
 AîD
	̄ ] AîD
	̄ omit. TI, ©Ê¢�� I.

275
�éJ
 	K A�K 	àñªK. P@ð �Ô 	gð ]

�éJ
 	K A�K 	àñªK. P@ð I,
�éJ
 	K A�K 	àñªK. P@ð ©K. P@ð T, secunde XLV Her. 280 I. ¢�®Ë@ ] AJ.¢�®Ë@

I. 282 	à@QÖ �ß ] 	à@QÖß
 T. h ð ' 	P ] hðP k. TI, corr. Ana. A 	Kñº�JËð ] A 	KñºJ
Ëð T. È' h' ¼' 	P ] Éj£ 	P TI,

corr. Ana. 283 È' h' ¼' 	P ] È' i£P TI, corr. Ana.
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	àA¿ , 	à'h'Ð' 	P �ñ�̄ © 	�ð éª 	�ð 	àA¿ ú �æÓð , A�K. PA 	« 'È �é¢�® 	K úÎ«ð 'h �é¢�® 	K úÎ« AÓð A �ªËA£
285 ú


�æ¢�® 	K úÎ« 	àA¿ AÓð ©ËA£ ñê 	̄ h ð ' 	à ú

�æ¢�® 	K úÎ« 	àA¿ AÓ �	à


@ ú


	æ«@ , ½Ë 	X 	¬C	m�'. QÓB@
	àA¿ð ,k. �é¢�® 	K ñm� 	' 'X �é¢�® 	K 	áÓ Aî�	E


A¿ ù
 ë AÖ

�	ß @
�èQºË@ �é»Qk �I	KA¿ 	X@ , H. PA 	« ñê 	̄ 	P ð 'Ð

. @ �YK. @ QëA 	£ é�	K @ © 	�ð Y�̄ ' è I. ¢�̄

PAî 	DË @ ÈYªÓ �èQK
 @X Õæ��®�K AëYgð ù
 ë ��
Ë h. ðQ�. Ë @ ¡�ñK. QÖ �ß ú

�æË @ �èQK
 @YË@ �	à


@ A�	J��
K. Y�̄ A�	J» 	XA 	̄

	à

@ ½Ë 	X 	áÓ I. j. J
 	̄ , ÈA�JÖÏ @ @ 	Yë úÎ« Õæ�Q�K ú


�æË@ �� 	̄ B@ QK
 @ðX 	á�
 	®�	JK. A �ªÓ éÒ��®�K 	áºË 	á�
 	®�	JK.
290 , 	à'Ð ¡ 	kð 'È'¼ ¡ 	k ú


	æ«@ , ©£A�®�JË @ © 	�@ñÓ 	á�
K. AÒJ
 	̄ C� 	̄ 	à@ 	YÊË @ 	àAÒJ
�®�J�ÖÏ @ 	àA¢	mÌ'@ 	àñºK

�ñ�̄ð , È k. �ñ�®Ë �éK
ðA�Ó PAî 	DË @ ÈYªÓ �èQK
@X 	áÓ A �	��
@ ' @'¼ �ñ�̄ �	à


@ 	á��
J. Ë @ 	áÔ 	̄ . è 	Q»QÖß. 	à@QÖß

. 	à k. �ñ�®Ë �éK
ðA�Ó 'Ð'@

úÎ« �� 	̄ B@ �èQK
 @X ø
 	Q»QÓ A 	JÊªk. 	à@ A�	K

@ ½Ë 	Xð . @'¼ �ñ�®Ë �éK
ðA�Ó A �	��
@ ' @'Ð �ñ�̄ 	áºËð

¡ 	k 	àA¾ 	̄ , ¨' '� ' è'¨ ' è'�  ñ¢ 	k A 	JÊ�ðð , ¨ �é¢�® 	Kð '� �é¢�® 	K , 	á�
ª 	�ñË@ 	áK

	Yë

295 úÎ« �éÖß
A�̄ AK
 @ð 	P úÎ« ' è'� ¡ 	k 	àA¿ð , h' 	P ¡ 	k úÎ« �éÖß
A�̄ AK
 @ð 	P úÎ«ð A �ÒJ
�®�J�Ó '¨' '�
�èYÔ«@ AîD
Ë @ h. Q	m��' ú


�æË @  ñ¢	mÌ'@ �I	KA¿ð , 	à'Ð ¡ 	k úÎ« �éÖß
A�̄ AK
 @ð 	P úÎ« ' è'¨ ¡ 	kð , È'¼ ¡ 	k
'�' ' è '¨' ' è ú


�æÊ�JÓ 	áÓ Yg@ð É¿ ¨C 	�@ �HPA� , 	á�
 	®�	JK. �èYÔ«B@ AêÒ ���®�K 	Q» @QÖÏ @ 	áÓ
ù
 ë '¨' ' è �IÊ�JÓ 	áÓ '¨' è'  �éK
ð@ 	Pð , 	á�
�JK
ð@ 	QË @ 	á�
�JÖß
A�̄ @PA�ð ,Q 	kB@ ¨C 	�B �éK
ðA�Ó
½Ë 	Xð , �' è'¼ �éK
ð@ 	QË �éK
ðA�Ó '¨' è'Ð �éK
ð@ 	P 	áºËð . �' ' è �IÊ�JÓ 	áÓ '�' è'  �éK
ð@ 	QË �éK
ðA�ÖÏ @

300 �HPA� ½Ë 	YËð . �éJ
�̄ AJ. Ë @ ' @' è'¼ �éK
ð@ 	QË �éK
ðA�Ó �éJ
�̄ AJ. Ë @ @ �	X @ ' @' è'Ð �éK
ð@ 	Q 	̄ . �éÖß
A�̄ AÒî 	DÓ �èYg@ð É¿ �	à

@

. @ '¼ �ñ�®Ë �éK
ðA�Ó '@'Ð �ñ�̄
. �éK
ðA���Ó 'h. ' @ ú


�æ¢�® 	K úÍ@ ú
æî �D 	J�Kð ' 	à 'È 'Ð '¼ ¡�® 	K 	áÓ ZøY�J�. �K ú

�æË@ @ �	X @ ø
 ñ�®ËA 	̄

�I	KA¿ AÖÏð . �éK
ðA���Ó 'X 'H. ú

�æ¢�® 	K úÍ@ ú
æî �D 	J�Kð A 	KQ» 	X �IJ
k 	áÓ ZøY�J�. �K ú


�æË @ A �	��
@ ú
æ��®Ë@ð
�ñ�®Ë �éK
ðA�Ó �ñ�®Ë@ è 	Yëð , H. '¼ �ñ�̄ ©Ó 'H. ' 	P �ñ�̄ð ' 	à'H. �ñ�̄ ©Ó ©Ê¢�� 'h'H. �ñ�̄

305 �ñ�®Ë@ è 	Yëð , 	à'X �ñ�̄ ©Ó X'h �ñ�̄ð '¼'X �ñ�̄ ©Ó ©Ê¢�� A �	��
@ 	P'X �ñ�̄ ½Ë 	YËð , 	à'H.
ú


�æË @ h. ðQ�. Ë @ ¡�ð ú

	̄ QÖ �ß ú


�æË@ �èQK
 @YË@ ú
æ��̄ �	à

@ A �	��
@ ½Ë 	X 	áÓ 	á��
J. �K Y�® 	̄ , ¼'X �ñ�®Ë �éK
ðA�Ó

. �éK
ðA���Ó 	àAÓ 	P@ ú

	̄ ©Ê¢�� @ñ� YªK. È@Y�J«B@ ú


�æ¢�® 	K 	áÓ Aî 	DJ
ªK. �èYg@ð �é¢�® 	K 	áÓ AëYªK.
ù
 ëð , X'h �ñ�̄ð , @'¼ �ñ�®K. �éÒJ
�®�J�ÖÏ @ �èQºË@ ©ËA¢Ó 	á« �é��̄ A 	K 'H. ' 	P �ñ�̄ �I	KA¿ AÖÏ A �	��
@ð
è 	Yëð , 	à k. �ñ�®K. �éÒJ
�®�J�ÖÏ @ �èQºË@ ©ËA¢Ó úÎ« É 	� 	®�K ,Q¢�®Ë@ úÎ« �ñ�®Ë@ è 	YêË �éÊK. A �®ÖÏ @ �ñ�®Ë@

285 h ð ' 	à ] hð' 	à TI, corr. Ana. 286 	P ð 'Ð ] 	à' P' Ð TI. 287 QëA 	£ ] @ �QëA 	£ I. 291 È k. ] @ k. TI,

corr. Ana. 295 	àA¿ð , h' 	P ] 	àA¿ ' 	à'h' 	P TI. 296 	à' Ð ] 	á» TI, corr. Ana. 297 	á�
 	®�	JK. ] 	á�
 	®�	� 	á�
 	®�	JK.
TI, corr. Ana. 302 ú


�æË@ @ �	X @ ø
 ñ�®ËA 	̄ ] ø

	YË@ @ �	X @ ú
æ

��ËA 	̄
TI.

�éK
ðA���Ó ] �IK
ðA�Ó I. 303 ú

�æË@ ] ø


	YË@ I.

305 	P' X ] 	à' X TI, corr. Ana. X' h ] X k. TI, corr. Ana. 	à' X ] PX I. 307 Aî 	DJ
ªK. ] Aî 	DJ
ªK. in marg.

T, AîD� 	®K I. ©Ê¢�� ] ©Ê¢�
 I.
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è 	Yë ú

	̄ �	à


@ 	á��
J. Ë @ 	áÔ 	̄ , ù


	®J
�Ë@ I. Ê�® 	JÖÏ @ �é¢�® 	K 'h �é¢�® 	K �I	KA¿ð , @'¼ �ñ�®Ë �éK
ðA�Ó �ñ�®Ë@ 310

ú

�æË@ ©ËA¢ÖÏ @ 	á« ©J
K. QË @ �é¢�® 	K Y 	J« ú


�æË@ h. ðQ�. Ë @ �èQK
 @X ú
æ��̄ 	àA��® 	K P@Y�®Ó 	àñºK
 A �	��
@ �èPñ�Ë@
©ËA¢ÖÏ @ è 	Yë úÎ« Q¢�®Ë@ úÎ« AêË �éÊK. A �®ÖÏ @ AêË �éK
ðA�ÖÏ @ ú
æ��®Ë @ �èXAK
 	P P@Y�®Öß. �éÒJ
�®�J�ÖÏ @ �èQºË@ ú


	̄

@ñ�J�B@ PAî 	E 	á« ��®	JK
 PAî 	DË @ [ 	áÓ] 	àñºK
 AÓ Qå��̄ @ �	à

@ ½Ë 	X 	àAJ
K. ©Ó é�J 	̄QªÓ É�îD��
 A �ÒÓð . Aî 	EAJ
«AK.

. 	á�
�ñ�®Ë@ 	á�
�KAîE. @ñ�J�B@ PAî 	E úÎ« YK
 	QK
 PAî 	DË @ 	áÓ 	àñºK
 AÓ Èñ£@ð ,k. ' 	à ð '@'¼ ú
æ�ñ�®K.

[11]

Èñ£@ 	á�
K. AÓ É 	� 	̄ Bð Yg. ñK
 Éë èA 	Jª 	�ð ø

	YË@ Õæ
Ê

�̄B @ @ 	Yë ú

	̄ Q 	¢ 	J 	JÊ 	̄ ½Ë 	X A 	J 	̄Q« Y�̄ 	XA 	̄

315

�èQºË@ ú

	̄ 	�QªK
 AÖÏ A ��® 	̄ @ñÓ @ñ�J�B@ PAî 	E 	á�
K. ð é 	JÓ 	àñºK
 AÓ Qå��̄ @ ð@ PAî 	DË @ 	áÓ 	àñºK
 AÓ

. �éÒ�j. ÖÏ @
	áºJ
Ëð . èYgð È 'h '¼ ' 	P ¡�® 	JK. QÖß
 ø


	YË@ �� 	̄ B@ AîD

	̄ �èPñ�Ë@ è 	Yë É�JÓ �èPñ� © 	�	J 	̄

. � �é¢�® 	K éËAg è 	Yë ø

	YË@ �� 	̄ B@ �èQK
 @X 	Q»QÓ A �	��
@ Éªj. 	J 	̄ . @ '¼ �ñ�̄ P@Y�®Ó Ym.�

	' 	à

@ A 	J 	�Q 	«

Ég. @ 	áÔ 	̄ . è A�	J��
J. 	̄ A 	JÓ �Y�®�K AÖÏ È'¼ 'h' 	P ù
 ¢ 	k úÎ« 	áK
XñÔ« 	àA 	KñºJ
 	̄ , è'� ' '� ù
 ¢ 	k É�	�ð 320

�� 	̄ @ �èQK
 @X 	Q»QÓ 	á�
K. ð PAî 	DË @ ÈYªÓ �èQK
 @X 	Q»QÓ 	á�
K. ø

	YË@ ¡	mÌ'@ ñëð , �' è ¡ 	k �	à


@ A�	J��
K. Y�̄ A�	K


@

@ 	Qk. BAK. , ú

	G @ñ�K �IÊ�Kð �é�®J
�̄ X 	àñ�JÊ�Kð �Ô 	gð @ �	Qk. 	àñ	KAÖ �ßð 	àA 	J�K @ ñë , èA 	Jª 	�ð ø


	YË@ Õæ
Ê
�̄B @ @ 	Yë

, h. ðQ�. Ë @ ½Ê 	̄ �èQK
 @X 	Q»QÓ 	á�
K. ð �èQK
 @YË@ è 	Yë 	Q»QÓ 	á�
K. ø

	YË@ ¡	mÌ'@ ñëð ,  ' è ¡ 	k �	à


@ © 	�ð ú


�æË@
AîE. 	àñºK
 ú


�æË@ @ �	X @ @ 	Qk. BA 	̄ , �éJ
 	K A�K 	àñ�Ôg. ð 	àAÖ �ßð �é�®J
�̄ X 	àñ�JÊ�Kð øYg@ð @ �	Qk. 	áK
Qå��«ð �é�J� AîE.
A �	��
@ ' ' è ¡ 	k 	àñºK
 AîE. , @ �	Qk. 	áK
Qå��«ð �éK
AÓ , �éÖß
A �®Ë @ �éK
ð@ 	QË @ Q�KñK
 ø


	YË@ ¡	mÌ'@ ñëð , �' è ¡ 	k 325

313 	áÓ ] omit. TI. 314 @ñ�J�B@ PAî 	E úÎ« ] @ñ�J�B@ úÎ« I. 315 Bð ] Bð@ TI. 316 AÓ Qå��̄ @ ð@ ] Qå��̄ @ ð@ I.

318 È 'h '¼ ' 	P ] È' ¼' 	P I. 319 è 	Yë ] in marg. T. 321
�� 	̄ @ �èQK
 @X 	Q»QÓ ]

�� 	̄ B@ �èQK
@X I.
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	á�
�JÊ�Kð] �ék. PX 	á�
�JÊ�Kð A �ªJ.� éJ
Ê« ú

�æË @ �ñ�®Ë@ð , I. K
Q�®�JËAK. �é�®J
�̄ X 	á�
�JÊ�Kð A

��JÊ�Kð @ �	Qk. 	á�
�JÊ�Kð �éJ
 	K AÖ �ß
	á�
�J�ð �éK
AÒ�JÊ�K �éK
ð@ 	QË @ Õç'
A �®Ë @ ' '�' è �IÊ�JÓ Èñk ú


�æË@ �èQK
 @YË@ 	àñº�K AîE. ú

�æË@ h. PYËAK. ,[ �é�®J
�̄ X

, �é�®J
�̄ X 	á�
�JÊ�Kð �ék. PX 	á�
�JÊ�Kð A �ªJ.� 	àñº�K , ¼' è' @ �éK
ð@ 	P É�JÓ ù
 ë ú

�æË@ , @ �	X @ è'�'  �éK
ð@ 	Q 	̄ . �ék. PX

A ��Ô 	gð �ék. PX �èQå��« 	àAÖ �ß 	àñº�Kð , �ék. PX 	á�
�J�ð �éK
AÒ�JÊ�K 	á�
�JÖß
A�̄ 	á�
�JK
ð@ 	P 	àñº�K AîE. ú

�æË@ h. PYËAK.

330 è 	Yë �I	KA¿ AÖÏð . �ék. PX 	á�
�J�ð �éK
AÒ�JÊ�K �éÖß
A�̄ AK
 @ð 	P ©K. P@ 	àñºK
 AîE. ú

�æË@ h. PYËAK. , �é�®J
�̄ X 	á�
ªK. P@ð

	á�
ªK. P@ð A ��Ô 	gð �ék. PX �èQå��« 	àAÖ �ß A �	��
@ '¼'@ �ñ�̄ �HPA� ,PAî 	DË @ ÈYªÓ �èQK
 @X 	Q»QÓ Y	J« �éK
ð@ 	QË @
. �é �®J
�̄ X

�Ô 	gð A�	KAÓ 	P 	á�
ªJ.�ð @ �Yg@ð 	àñºK
 ©J
K. QË @ �é¢�® 	K Y 	J« 	áK

	YÊË @ 	á�
ªK. QË @ 	áÓ @ �	X @ Yg@ð É¾ 	̄

	àAÓ 	P@ �éJ
 	K AÖ �ßð �éK
AÓ 	àñºK
 	K
Q	mÌ'@ �é¢�® 	K Y 	J« 	áK

	YÊË @ 	á�
ªK. QË @ 	áÓ Yg@ð É¿ð , �é�®J
�̄ X �èQå��«

335
	àñºK
 AÓ Qå��̄ @ð PAî 	DË @ 	áÓ 	àñºK
 AÓ Èñ£@ 	á�
K. AÓ É 	� 	̄ 	àñºK
 ½Ë 	YËð . �é�®J
�̄ X 	á�
ªK. P@ð A ��Ô 	gð
	á�
�J«A� @ñ�J�B@ �HA«A� 	áÓ 	àñºK
ð , �é�®J
�̄ X 	á�
�JÊ�Kð A�	K AÓ 	P 	á�
�JÊ�Kð �éªJ.� @ñ�J�B@ PAî 	E 	á�
K. ð é 	JÓ

. �éÒ�j. ÖÏ @ �èQºË@ ú

	̄ A�	J��
K. AÓ É�JÓ úÎ« 	�	�ð

[12]

�èQK
 @X ÈA�JÖÏ @ @ 	Yë úÎ« © 	�	� . èA 	Jª 	�ð ø

	YË@ Õæ
Ê

�̄B @ @ 	Yë ú

	̄ A �	��
@ h. ðQ�. Ë @ ©ËA¢Ó Ym.�

	' 	áºËð
�èQK
@YË@ 	áÓ É� 	® 	Kð , h' 	P ð X'H. ø
 Q¢�̄ Èñk h. ðQ�. Ë @ ¡�ð ú


	̄ QÖ �ß ú

�æË @ �èQK
 @YË@ð PAî 	DË @ ÈYªÓ

340 .  'H. �ñ�̄ h. ðQ�. Ë @ ¡�ð ú

	̄ QÖ �ß ú


�æË@
�èQK
 @X QK
Y 	Kð , È' è'  ¡ 	k É�	�ð . �HñmÌ'@ h. QK. é�	K


@ 	á��
J. Ë @ 	áÓð , Bð@ Yg@ð h. QK. �ñ�̄ 	áº�JËð

. 	à 'Ð ú

�æ¢�® 	K ú
Î« PAî 	DË @ ÈYªÓ �èQK
@X ©¢�®�JËð . È '  ú


�æ¢�® 	JK. �èPAÓ èA 	Jª 	�ñ 	̄ A 	JÓ �Y�®�K ø

	YË@ �� 	̄ B@

326 2 �é�®J
�̄ X 	á�
�JÊ�Kð ] omit. TI, cum punctis XXX Her. 327 	àñº�K ] 	àñºK
 I.
�éK
AÒ�JÊ�K ] �éK
AÒ�JÊ�Kð I.

328 è' �'   ] �ê£ TI, corr. Ana. 333 	áK

	YÊË @ ] 	áK


	Y
�
Ë @ I. 339 X' H. ] ¼' H. TI, corr. Ana. 341 	áº�JËð ]

	áºJ
Ëð I. 	áÓð ] 	áÓ I.
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AÒëð , 	á�
ÒJ
�®�J�Ó 	á�
¢ 	k , �� 	̄ B@ �èQK
 @X 	Q»QÓ ù
 ëð , � �é¢�® 	K 	áÓ A �	��
@ h. Q	m� 	'ð , 	à' è'Ð ¡ 	k É�	�ð
. ¨'� ¡ 	k ñëð , È'  ¡ 	k úÎ« @ �XñÔ« Aî 	DÓ h. Q	m� 	'ð ,  '� ð ' è'�

	á« 	á�
J. 	K Am.Ì'@ 	áÓ ÉÒmÌ'@ h. QK. ð �HñmÌ'@ h. QK. ��®	JK
 AîE. ú

�æË @ ù
 ë 'Ð'¼ �ñ�̄ �	à


@ ÉJ
J. �̄ A�	J��
K. Y�̄ð 345

�èQºË@ ú

	̄ AÒêªËA¢Ó úÎ« 	à@ 	Q�
ÖÏ @ h. QK. ð �éÊJ. 	��Ë@ h. QK. AîE. É 	� 	®K
ð , �éÒJ
�®�J�ÖÏ @ �èQºË@ ú


	̄ AÒêªËA¢Ó
. �éÒJ
�®�J�ÖÏ @

úÎ« Õæ�Q�K ú

�æË@ PAî 	DË @ ÈYªÓ �èQK
 @YË �éK
 	P@ñÖÏ @ QK
 @ðYË@ Q¢�̄ 	�	� ñëð ,  ' è ¡ 	k �	à


@ A�	J��
K. Y�̄ð

AîE. © 	�ð ú

�æË@ @ 	Qk. BAK. , ú


	G @ñ�K ©J.�ð �é�®J
�̄ X 	àñ�JÊ�Kð ©��� @ �	Qk. 	àñªJ.�ð �é�JÊ�K ñë , �HñmÌ'@ �@P
@ �	Qk. 	á�
 	KAÖ �ßð 	á�
 	J�K @ , �� 	̄ B@ �èQK
 @X 	Q»QÓð PAî 	DË @ ÈYªÓ �èQK
@X 	Q»QÓ 	á�
K. ø


	YË@ ¡	mÌ'@ ñëð , �' è ¡ 	k 350

'�' è ¡ 	k ©K. QÓ úÎ« éÊ�JÓ ú

	̄ '�'  ¡ 	k ©K. QÓ É 	� 	̄ �	à


@ð , ú


	G @ñ�K �IÊ�Kð �é�®J
�̄ X 	á�
�JÊ�Kð A ��Ô 	gð
úÎ« ÉJ. �̄ A 	JÊª 	̄ AÓ ÈA�JÓ úÎ« ½Ë 	X A 	JÒ��̄ @ 	X @ð . @ 	Qk. B@ è 	Yë 	áÓ 	Qk. �éK
AÒ�J�ð 	Ë@ �é�JÊ�K éÊ�JÓ ú


	̄
�èQºË@ ú


	̄ A 	JÊª 	̄ AÒ» ½Ë 	X @ñÊ�JK
 AÓ A 	JÊª 	̄ð , ú

	G @ñ�K ©J.�ð �é�®J
�̄ X 	á�
�JÊ�Kð ©���ð @ �	Qk. 	á�
ªJ.�ð �é�JÊ�K

@ 	Qk. BAK. , �éJ
 	K A�K �èQå��« ú

�æ 	J�K @ð �é�®J
�̄ X 	áK
Qå��«ð A

��JÊ�Kð @ �	Qk. Qå��« ú

	æ�K @ '¨' è ¡ 	k A 	JË h. Q 	k , �éÒJ
�®�J�ÖÏ @

ú

�æË @ @ 	Qk. BA 	̄ . ú


	G @ñ�K �IÊ�Kð �é�®J
�̄ X 	á�
�JÊ�Kð �Ô 	gð @ �	Qk. 	á�
 	KAÖ �ßð 	á�
 	J�K @ '�' è ¡ 	k 	àñºK
 AîE. ú

�æË@ 355

'¨' è ¡ 	k 	àñºK
 AîE. , @ �	Qk. 	áK
Qå��«ð �éK
AÓ , �éÖß
A �®Ë @ �éK
ð@ 	QË @ Q�KñK
 ø

	YË@ ñëð , �' è ¡ 	k AîE. 	àñºK


, �é�®J
�̄ X �èQå��« �I�ð �ék. PX �èQå��« ©J.� éJ
Ê« ú

�æË@ �ñ�®Ë@ð , I. K
Q�®�JËAK. �é�®J
�̄ Xð @ �	Qk. Qå��« �éJ
 	K AÖ �ß

�éK
ð@ 	Q 	̄ . �ék. PX 	á�
�J�ð �éK
AÒ�JÊ�K '¨'�' è �IÊ�JÓ Èñk ú

�æË@ �èQK
 @YË@ 	àñº�K AîE. ú


�æË @ @ 	Qk. BAK.
h. PYËAK. , �é�®J
�̄ X Qå��« �I�ð �ék. PX Qå��« �éªJ.� 	àñº�K , Ð' è'¼ �éK
ð@ 	P É�JÓ ù
 ë ú


�æË@ , A �	��
@ '¨'�' è
, �é�®J
�̄ X 	á�
�JÊ�Kð 	àAÖ �ßð h. PX 	àAÖ �ß 	àñº�Kð , �ék. PX 	á�
�J�ð �éK
AÒ�JÊ�K 	á�
�JÖß
A�̄ 	á�
�JK
ð@ 	P 	àñº�K AîE. ú


�æË@ 360

h. PX 	àAÖ �ß ù
 ë A �	��
@ 'Ð'¼ �ñ�® 	̄ . �ék. PX 	á�
�J�ð �éK
AÒ�JÊ�K �éÖß
A�̄ AK
 @ð 	P ©K. P@ 	àñºK
 AîE. ú

�æË@ h. PYËAK.

. �ék. PX 	á�
�J�ð �éK
AÒ�JÊ�K PAî 	DË @ ÈYªÓ �èQK
 @X 	àñº�K AîE. ú

�æË @ h. PYËAK. , �é�®J
�̄ X 	á�
�JÊ�Kð 	àAÖ �ßð

�éªJ.� �éÒJ
�®�J�ÖÏ @ �èQºË@ ú

	̄ AëA 	Jª 	�ð ú


�æË@ h. ðQ�. Ë @ �éªK. PB@ 	áÓ Yg@ð É¿ ©ËA¢Ó �I	KA¿ Y�̄ð
, �é�®J
�̄YË@ 	á�
�JÊ�JË @ð 	àAÒ�JË @ð 	àAÓ 	PB@ �éJ
 	K AÒ�JË @ è 	Yë Aî 	DÓ A 	J��® 	K @ 	XA 	̄ . �é �®J
�̄ X 	á�
�Ô 	gð A�	K AÓ 	P 	áK
Qå��«ð
@ 	XA 	̄ . �é �®J
�̄ X �èQå��« ú


�æ 	J�K @ð A�	K AÓ 	P Qå��« �éª��� ÉÒmÌ'@ð �HñmÌ'@ ú
k. QK. 	áÓ Yg@ð É¿ ©ËA¢Ó A 	JË h. Q 	k 365

	á�
�JÊ�Kð �é�J� 	à@ 	Q�
ÖÏ @ð �éÊJ. 	��Ë@ ú
k. QK. 	áÓ Yg@ð É¿ ©ËA¢Ó A 	JË h. Q 	k , é 	JJ
ªK. ½Ë 	X @ 	Yë úÎ« A 	KX 	P
. �é�®J
�̄ X 	áK
Qå��«ð 	àAÖ �ßð A�	K AÓ 	P

[13]

�Q�®K
 ú �æk ,ñËYË@ð �HñmÌ'@ ú

	æ«@ , 	á�
g. QK. �ñ�̄ ' 'H. �ñ�̄ �èPñ�Ë@ è 	Yë É�JÓ ú


	̄ A �	��
@ © 	�	J 	̄
. éË Ag úÎ« èA 	KQ» 	X AÓ QK
A�

344 Aî 	DÓ ] AÒî 	DÓ TI, corr. Ana. 349 ñë ] ñëð TI. 354 ú

	æ�K@ ] A 	J�K @ TI. A

��JÊ�Kð @ �	Qk. ] A
��JÊ�Kð @ 	Qk. B@ è 	Yë 	áÓ @ �	Qk.

TI. ú

�æ 	J�K @ð ] A�J 	��K @ð TI. 357 éJ
Ê« ] AîD
Ê« I. 360 	àñº�K ] 	àñºK
 I. 	àñº�Kð ] 	àñºK
ð I. 361 	àñºK
 AîE. ]

AîE. 	àñºK
 AîE. I.
�ék. PX ] @ �	Qk. TI, corr. Ana.
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Three labels mentioned in the text are missing in T.

370 �@P úÎ« Õæ�Q�K ú

�æË @ PAî 	DË @ ÈYªÓ �èQK
 @YË �éK
 	P@ñÖÏ @ �èQK
 @YË@ Q¢�̄ 	�	� ñëð ,  ' è 	àñºJ
 	̄

Õæ��̄ @ 	X @ð . �éJ
 	K A�K 	á�
ªK. P@ð 	á�
 	J�K @ð �é�®J
�̄ X 	áK
Qå��«ð A �ª���ð @ 	Qk. B@ è 	Yë 	áÓ @ �	Qk. 	á�
 	K AÖ �ßð �é�J� , ñËYË@
	á�
 	J�K @ '¨' è ¡ 	k A 	JË h. Q 	k , Ð �Y�®�K AÒJ
 	̄ A 	KQ» 	X AÓ ÈA�JÓ úÎ« 	Qk. �éK
AÒ�J�ð 	Ë@ �é�JÊ�K úÎ« ½Ë 	X
	á�
 	J�K @ '�' è ¡ 	k 	àñºK
 AîE. ú


�æË@ @ 	Qk. BAK. , �éJ
 	K A�K �èQå��« �IÊ�Kð �é�®J
�̄ X 	áK
Qå��«ð A��J�ð @ �	Qk. 	áK
Qå��«ð
ñëð , �' è ¡ 	k 	àñºK
 AîE. ú


�æË@ A �	��
@ @ 	Qk. B@ð . ú

	G @ñ�K �IÊ�Kð �é�®J
�̄ X 	á�
�JÊ�Kð A ��Ô 	gð @ �	Qk. 	á�
 	K AÖ �ßð

375 A��J�ð @ �	Qk. 	á�
�JÊ�Kð 	á�
 	J�K @ '¨' è ¡ 	k 	àñºK
 AîE. , @ �	Qk. 	áK
Qå��«ð �éK
AÓ , �éÖß
A �®Ë @ �éK
ð@ 	QË @ Q�KñK
 ø

	YË@ ¡	mÌ'@

h. PYËAK. , �é�®J
�̄ X 	á�
�JÊ�Kð 	á�
 	J�K @ð �ék. PX 	á�
�JÊ�Kð øYg@ éJ
Ê« ú

�æË @ �ñ�®Ë@ð , I. K
Q�®�JËAK. �é�®J
�̄ X 	á�
�JÊ�Kð

. �ék. PX 	á�
�J�ð �éK
AÒ�JÊ�K �éK
ð@ 	QË @ Õç'
A �®Ë @ '¨'�' è �IÊ�JÓ Èñk Õæ�Q�K ú

�æË @ �èQK
 @YË@ 	àñº�K AîE. ú


�æË@
	àñ�JÊ�Kð 	àA�J 	��K @ð �ék. PX 	àñ�JÊ�Kð øYg@ ù
 ë , Ð' è'¼ �éK
ð@ 	P É�JÓ ù
 ë ú


�æË@ , @ �	X @ '¨'�' è �éK
ð@ 	Q 	̄
�ék. PX �èQå��« �Ô 	g ñëð , �ék. PX 	á�
�J�ð �éK
AÒ�JÊ�K 	àA�JÖß
A�̄ 	àA�JK
ð@ 	P 	àñº�K AîE. ú


�æË@ h. PYËAK. , �é�®J
�̄ X
380 �ñ�® 	̄ . �ék. PX 	á�
�J�ð �éK
AÒ�JÊ�K �éÖß
A�̄ AK
 @ð 	P ©K. P@ 	àñºK
 AîE. ú


�æË@ h. PYËAK. , �é�®J
�̄ X 	àñªK. P@ð �é�J�ð
�èQºË@ ú


	̄ ©ËA¢ÖÏ @ 	á�
K. ð AÒëA 	Jª 	�ð 	áK

	YÊË @ 	á�
g. Q�. Ë @ ©ËA¢Ó 	á�
K. ¼Q�� ��ÖÏ @ É 	� 	®Ë @ ù
 ëð , @ �	X @ Ð'¼

ÈYªÓ �èQK
@X 	àñº�K AîE. ú

�æË@ h. PYËAK. , �é�®J
�̄ X 	á�
ªK. P@ð A��J�ð �ék. PX �èQå��« �Ô 	g 	àñº�K , �éÒJ
�®�J�ÖÏ @

. �ék. PX 	á�
�J�ð �éK
AÒ�JÊ�K PAî 	DË @
	àA

	̄ , �é�®J
�̄ X 	á�
ªK. P@ð ©K. P@ð A�	K AÓ 	P 	á�
�Ô 	gð A �ªJ.� �éÒJ
�®�J�ÖÏ @ �èQºË@ ú

	̄ AêªËA¢Ó �I	KA¿ Y�̄ð

385 ©K. P@ð �ék. PX 	á�
�Ô 	gð ©J.� 	áÓ �é�®J
�̄ X 	á�
ªK. PB@ð �I�Ë@ð �ék. PX �èQå��« �Ò	mÌ'@ è 	Yë A 	J��® 	K
	àAÖ �ßð A�	K AÓ 	P 	á�
ªK. P@ð @ �Yg@ð 	á�
«ñÒm.× ñËYË@ ©ËA¢Óð �HñmÌ'@ ©ËA¢Ó A 	JË h. Q 	k , �é�®J
�̄ X 	á�
ªK. P@ð

370 	àñºJ
 	̄
] 	àñºK
ð TI. 371

�é�J� ]
�é�J�Ë TI. 372 	Qk. ] �é�®J
�̄ X 	á�
ªK. P@ð ©���ð add. TI, corr. Ana. 378 @ �	X @ ]

omit. I. 379 	àñº�K ] 	àñºK
 TI. 380 h. PYËAK. ] @ 	Qk. BAK. I. 381 Ð' ¼ ] Ð' ¼' è I. 382 1 	àñº�K ] 	àñºK
 I.

383
�ék. PX ] @ �	Qk. TI, corr. Ana. 385

�é�®J
�̄ X ]
�é�®J
�̄YË@ T. 	á�
�Ô 	gð ©J.� ] 	á�
ªK. P@ð �Ô 	g I. 386 h. Q 	k ]

�Ik. Q 	k TI. @ �Yg@ð ] øYg@ð I.
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	áÓ , �é�®J
�̄ X 	á�
ªK. P@ð A��J�ð A�	K AÓ 	P 	áK
Qå��«ð 	á�
 	J�K @ 	àñºJ
 	̄ , èYgð ñËYË@ ©ËA¢Ó A�Ó@ð . �é�®J
�̄ X 	á�
�Ô 	gð
�èQå��« �Ò	mÌ'@ A 	KX 	P 	à@ð . �é�®J
�̄ X �èQå��« ú


�æ 	J�K @ð A�	K AÓ 	P Qå��« �éª��� ú

	̄ ©Ê¢�
 	àA¿ �Hñ	mÌ'@ �	à


@ ÉJ. �̄

A 	JË h. Q 	k , �é�®J
�̄ X 	á�
ªK. P@ð ©K. P@ð �ék. PX 	á�
�Ô 	gð ©J.� úÎ« �é�®J
�̄YË@ 	á�
ªK. PB@ð �I�Ë@ð �ék. PYË@
. �é�®J
�̄ X 	á�
�JÊ�Kð A�	K AÓ 	P 	á�
ªJ.�ð �é�JÊ�K �IªÔg. @ 	X @ AÒêªËA¢Ó 	àñºK
ð , �éÊJ. 	��Ë@ ©ËA¢Óð Y�B@ ©ËA¢Ó 390

�I	KA¿ A �	��
@ �éÊJ. 	��Ë@ �	à

@ ÉJ. �̄ 	áÓ , 	á�
�J�®J
�̄ Xð A�	K AÓ 	P 	á�
�JÊ�Kð �éªJ.� 	àñº�J 	̄ , èYgð Y�B@ ©ËA¢Ó A�ÓA 	̄

	àAÓ 	P@ ú

	̄ ©Ê¢�
 A �	��
@ Pñ�JË @ �	à


@ 	á��
J. Ë @ 	áÓð . �é�®J
�̄ X 	áK
Qå��«ð 	àAÖ �ßð A�	K AÓ 	P 	á�
�JÊ�Kð �é�J� ú


	̄ ©Ê¢��
©Ê¢�
 H. Q�®ªË@ð , �é�®J
�̄ X 	àñªK. P@ð �I�ð A�	K AÓ 	P 	àðQå��«ð 	àA 	J�K @ ù
 ëð ,ñËYË@ ¨ñÊ£ 	àAÓ 	PB �éK
ðA�Ó
É¿ ¨ñÊ£ �	à


@ð , 	àA�®J
�̄ Xð �ék. PX 	àñ�JÊ�Kð ©J.� ù
 ëð , Y�B@ ¨ñÊ£ 	àAÓ 	PB �éK
ðA�Ó 	àAÓ 	P@ ú


	̄

A�	K AÓ 	P 	àðQå��«ð �éª��� ù
 ëð , ©K. QË @ @ 	Yë ú

	̄ �éJ
�̄ AJ. Ë @ 	àAÓ 	PB@ ú


	̄ 	àñºK
 @ 	Pñm.Ì'@ð ø
 Ym.Ì'@ 	áÓ Yg@ð 395

	áÓ �éJ
�̄ AJ. Ë @ 	àAÓ 	PB@ ú

	̄ 	àñºK
 �ñ�®Ë@ð 	àA£Qå�Ë @ 	áÓ Yg@ð É¿ ¨ñÊ£ �	à


@ð , �é�®J
�̄ X �èQå��« ©J.�ð

. Ð �Y�®�JÖÏ @ A 	J 	�Q 	ªK. ��J
ÊK
 AÓ úÎ« , �é�®J
�̄ X �èQå��« �Ô 	gð A�	KAÓ 	P 	àñ�JÊ�Kð �é�Ô 	g ù
 ëð , A �	��
@ ©K. QË @ @ 	Yë

[14]

h. ðQK. ©ËA¢Ó ú

	̄ QÓB@ 	àñºK
 i¢�Ó ¡J
��. ú


	̄ ú

�æË@ A �	��
@ �èPñ�Ë@ è 	Yë ú


	̄ �	à

@ A�	J��
K. Y�® 	̄

. �éÒ�j. ÖÏ @ �èQºË@ ú

	̄ è A�	J��
K. AÖÏ A ��® 	̄ @ñÓ ½Ë 	X ©J. ��K
 AÓ ©J
Ôg. ð h. ðQ�. Ë @ ¡�ð ú


	̄ QÖ �ß ú

�æË @ �èQK
 @YË@

, èA 	KQ» 	X AÓ éJ
 	̄ Õæ�Q 	K 	à

@ YK
Q 	K ø


	YË@ ÐñÊªÖÏ @ © 	�ñÖÏ @ P@Y�®Ó I. �k úÎ« �èPñ�Ë@ Éªm.�
	' 	áºËð 400

. ½Ë 	X A 	KXP@ 	à@ , �é�JK. A�JË @ I. » @ñºË@ © 	�ð Õæ�Q 	K 	à

@ éJ
 	̄ A 	JË


A�J
î �DK
 ú �ækð

© 	�	� A�	K

A 	̄ , �HñJ.º	JªË@ �HA«A�Ë@ �HB

�
@ ú


	̄ �é ��A 	g ù

�Ò��
 ø


	YË@ ú
æ
��Ë @ éJ
 	̄ © 	�	� 	à


@ A 	KXP@ 	à@ð

ÈYK. ¡	m� 	'ð . è 	Q»QÓ Èñk 'X k. 'H. '@ �èQK
 @X AêÒ 	¢«@ð AêÊ¿ QK
@ðYË@ h. PA 	g 	àñº�K ú

�æË@ �èQK
 @YË@

	áÓ É� 	® 	Kð . X'H. 'k. ' @ ù
 ¢ 	k A 	KñºJ
Ëð . �éÖß
A�̄ AK
 @ð 	P úÎ« 	àAª£A�®�JK
 	áK
Q¢�̄ PAî 	DË @ 	�	� QK
@ðX
ú


�æË @ PAî 	DË @ ÈYªÓ �èQK
 @YË �éK
 	P@ñÖÏ @ �èQK
 @YË@ YªK. P@Y�®Öß. AëP@Y�®Ó 	áºJ
Ëð . 	P'X �ñ�̄ 'X �é¢�® 	K Y 	J« 405

, X' è ¡	mÌ A�K
 	P@ñÓ A �¢ 	k 'k. �é¢�® 	K 	áÓ h. Q	m� 	'ð . �éÒ�j. ÖÏ @ �èQºË@ ú

	̄ ú
G. ñ

	Jm.Ì'@ I. ¢�®Ë@ 	á« AëA 	Jª 	�ð
¡ 	k ñëð , X' è ¡ 	k úÎ« @ �XñÔ« 'h �é¢�® 	K 	áÓ h. Q	m� 	'ð , h' 	P'X ¡ 	k É�	�ð . h k. ¡ 	k 	áºJ
Ëð

.  'h
YªK. ù
 ë , A ��ñ�̄ 'k. �é¢�® 	K Y 	J« 	áÓ É� 	® 	K ú �æk Ð �Y�®�K AÒJ
 	̄ A 	JÊª 	̄ AÓ É�JÓ A 	JÊª 	̄ 	à@ A�	K @ Èñ�̄ A 	̄

A �£ñ¢ 	k A 	JÊ�ðð , �� 	̄ @ñÖÏ @ I. 	KAg. úÍ@ PAî 	DË @ ÈYªÓ �èQK
 @YË �éK
 	P@ñÖÏ @ �éJ
�̄ AJ. Ë @ QK
 @ðYË@ 	áÓ �èYg@ð É¿ 410

A 	J 	�Q 	« 	àA¿ 	à@ C
��JÓ 'k. '¼'X ¡ 	k É�JÓ É� 	® 	K ú


�æË@ ú
æ��®Ë @ 	¬@Q£@ 	á�
K. ð 'X �é¢�® 	K 	áÓ �éÒJ
�®�J�Ó

388
�éª��� ] ú


�æ 	J�K @ TI, corr. Ana. 393
�éK
ðA�Ó ]

�éK
ðA���Ó TI. 	àñªK. P@ð ] 	àñ�JÊ�Kð TI, corr. Ana. 397 A�	K AÓ 	P ]

omit. I. 399 èA�	J��
K. ] èA 	KQ» 	X I. 400 ½Ë 	X A 	KXP@ 	à@ . . . 	áºËð ] cited Mas, éJ
 	̄
omit. Mas, © 	�ð: © 	�@ñÓ Mas.

400 èA 	KQ» 	X ] A 	KQ» 	X T. 401 	à

@ éJ
 	̄ A 	JË ] 	à@ A 	JË I. 403 ÈYK. ] omit. I. 407 	áºJ
Ëð ] 	àñº�JËð T. 408  ' h ] ¡ 	k

I.
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, @ �	Q»QÓ ' è �é¢�® 	K A 	JÊªk. ð , ¼'  ¡	mÌ A�K
ðA�Ó 'È' è ¡ 	k A 	JÊªk. ð ,PAî 	DË @ ÈYªÓ �èQK
 @X Õæ�Q 	K 	à

@

.PAî 	DË @ ÈYªÓ �èQK
 @X © 	�ð �èQK
 @YË@ è 	Yë © 	�ð 	àA¿ , �'Ð'È �èQK
 @X 'È' è YªJ. Ë ð� A�Ó YªJ. K. A 	KPX@ð
A�	J��
K. AÓ úÎ« ½Ë 	X �º« A 	JÊª 	̄ 	à@ A�	K


@ ½Ë 	Xð , ÈA�JÖÏ @ @ 	Yë úÎ« �éJ
�̄ AJ. Ë @ QK
 @ðYË@ 	áÓ �èYg@ð É¿ð

415 AêË �éK
 	P@ñÖÏ @ �èQK
 @YË@ Aêj¢� ú

	̄ Õæ�Q 	Kð '�'Ð'È �èQK
@X PAî 	DË @ ÈYªÓ �èQK
@X © 	�	� ú �æk Ð �Y�®�K AÒJ
 	̄

�èQK
 @YË@ ù
 ë 'X k. 'H. '@ �èQK
 @X �I	KA¿ , 	P k. �ñ�®K. �éîD
J. �� �ñ�̄ PY�®K. H. ñ 	Jm.Ì'@ úÍ@ Aî 	D« AëYªK. ú

�æË@

ú �æk 	à �é¢�® 	K úÎ« ,PAî 	DË @ ÈYªÓ �èQK
@X ù
 ëð , Ð'È �èQK
 @X ©¢�®J
Ëð 'k. 'Ð ¡ 	k É�	J 	̄ . Õæ�Q 	K ú

�æË@

. @ �Q�
 	g@ A 	JÊª 	̄ AÒ» ,k. ' è YªJ. K. ð ' è 	Q»QÓ úÎ« �éÓñ�QÓ 'X k. 'H. '@ �èQK
 @X 	àñº�K
'k. ' è ¡ 	k úÍ@ ' è'X ¡ 	k �éJ.�	� �	à


@ ½Ë 	X 	àAëQK. . 	P'X �ñ�®K. �éîD
J. �� ' 	à'Ð �ñ�̄ �	à@ Èñ�̄ A 	̄

420 . ¼'  ¡	mÌ ð� A�Ó A �	��
@ ' 'X ¡	m 	̄ ,k. ' è ¡	mÌ ð� A�Ó ' è'X ¡ 	kð , ¼'  ¡ 	k úÍ@ ' 'X ¡ 	k �éJ.� 	�»
¡	mÌ ð� A�Ó A �	��
@ 'h'  ¡ 	kð . Ð' è ¡	mÌ ð� A�Ó A �	��
@ ' 'X ¡	m 	̄ , Ð' è ¡	mÌ ð� A�Ó '¼'  ¡ 	k 	áºËð
�ñ�® 	̄ , 	P'X' è �éK
ð@ 	QË �éK
ðA�Ó ' 	à'Ð' è �éK
ð@ 	Q 	̄ . 	à'Ð ¡	mÌ 	P� @ñÓ @ �	X @ 	P'X ¡	m 	̄ , éË 	P� @ñÓð 'k. ' è

. �éJ
�̄ AJ. Ë @ ' 	P'X �ñ�®K. �éîD
J. �� �éJ
�̄ AJ. Ë @ ' 	à'Ð �ñ�® 	̄ , 	P k. 'H. �ñ�®K. �éîD
J. �� @ �	X @ 	à'È'�

There are corrections to the diagram in T. The figure was originally labeled, and probably

drawn, by a copyist at an orientation about 135◦ clockwise from the copyist of the text.

The configuration of triangle X h k. in the original drawing was incorrect. The original,

ruled lines were then crossed out; these are omitted from the reproduction. Lines h'X and

 'h were added by freehand. The labels ¼ and 	P were probably added at this time, since

they are oriented about 20◦ counterclockwise from the text. The orientation of the ms

labels is not reproduced.

412 ¼'   ] ½ë TI, corr. Ana. 412
�é¢�® 	K ] �é¢�® 	K �é¢�® 	K I. 417 	à ] È TI, corr. Ana. 420 ¡ 	k �éJ.� 	�» ]

¡	m» TI. 422 	P' X ] 	à' X TI, corr. Ana. 	P' X' è ] 	à' X' è TI, corr. Ana. 423 	à' È' � ] 	áº� I.
�éJ
�̄ AJ. Ë @ ' 	P' X . . . �éîD
J. �� ] cited as 	á��
J. 	K 	à


@ A 	KXP@ AÓ ½Ë 	Xð , 	P k. �ñ�®K. �éîD
J. �� Mas.
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[15]

QÖ �ß ú

�æË@ �èQK
 @YË@ Y 	J« AêËAg ú


�æË@ QK
 @ðYË@ Õæ�Q 	K 	J
» 	á��
J. 	K 	à

AK. A 	J 	�Q 	« ÑÒ�J 	K 	à


@ A �	��
@ ù


	ªJ. 	�K
ð
© 	�	� 	à


@ A 	JºÖß
 ú �æk ,PAî 	DË @ ÈYªÓ Y	J« AëQ» 	X Ð �Y�®�K ú


�æË @ QK
 @ðYË@ ÈAm» h. ðQ�. Ë @ ¡�ð ú

	̄

425

Bð@ ÉÒª�J�	� 	à

@ Q�
 	« 	áÓ ½Ê 	®Ë @ @ 	Yë úÍ@ AîD�AJ
 �®K. Aêª 	�@ñÓ �I 	̄Q«ð �HY�P ú


�æË@ I. » @ñºË@
.PAî 	DË @ ÈYªÓ �èQK
 @X úÍ@ AîD�AJ
 �®K. AêË ú


�æË @ ¨C 	�B@
Èñk 'X k. 'H. '@ �èQK
 @X �éjJ
 	®�Ë@ ú


	̄ © 	�ñ�K ú

�æË @ QK
 @ðYË@ 	áÓ PAî 	DË @ ÈYªÓ �èQK
 @X Bð@ 	áº�JÊ 	̄

¡ 	k A �ªJ
Ôg. 	á�
J.¢�®ËAK. QÖß
 ø

	YË@ Õæ


�®�J�ÖÏ @ ¡	mÌ'@ð , X'H. ' 	P �èQK
 @X h. ðQ�. Ë @ �èQK
 @Xð , è 	Q»QÓ
	ám� 	' 	àA

	̄ . X' è'H. ¡ 	k PAî 	DË @ ÈYªÓ �èQK
 @X 	áÓ ©£A�®�JË @ © 	�ñÖß. QÖß
 ø

	YË@ ¡ 	kð ,k. 'h' è' @' 	P 430

ú

�æË@ �èQK
 @YË@ð PAî 	DË @ ÈYªÓ �èQK
 @X ú
æ.¢

�̄ 	á�
K. ú

�æË@ �ñ�®ÊË �éK
ðA�Ó AëA 	JÊªk. ð ' 'H. �ñ�̄ A 	JÊ� 	̄

ú

	̄ QÖ �ß ú


�æË @ �èQK
 @YË@ I. ¢�̄ �èQ�
 	¢ 	� '¼ �é¢�® 	K �I	KA¿ ,  '¼'X ¡ 	k A 	JÊ�ðð , h. ðQ�. Ë @ ¡�ð ú

	̄ QÖ �ß

. A 	Jm� 	�ð@ AÓ I. �m�'. 	àñºK
 ½Ë 	X �	à

@ 	á��
J. Ë @ 	áÓð . �èñ�®ËAK. h. ðQ�. Ë @ ¡�ð

ú

�æË@ �èQK
 @YË@ ú


	̄ Q¢�®Ë@ úÎ« �éÊK. A �®�JÓ ù
 ë ú

�æË@ ¡�® 	JË AK. ð �é¢�® 	JË @ è 	YîE. QÖ �ß ú


�æË @ QK
 @ðYË@ �I	KA¿ð
ù
 ë �éÓñ�QÖÏ @ QK
 @ðYË@ è 	Yë 	àñº�Kð . 	á�
 	®�	JK. A �	��
@ PAî 	DË @ ÈYªÓ �èQK
@YË �éÖÞ�A�̄ h. ðQ�. Ë @ ¡�ð ú


	̄ QÖ �ß 435

©J
Ôg.
�	à


@ A�	J��
K. Y�̄ A�	K


B , �éÖß
A�̄ AK
 @ð 	P úÎ« h. ðQ�. Ë @ �èQK
 @X úÎ« �éÖß
A �®Ë @ ÐA 	¢ªË@ QK
 @ðYË@ ÐA �®Ó Ðñ�®�K ú


�æË@
©¢�®�K Aî�	E


A 	̄ ,Q¢�®Ë@ úÎ« AÒëA 	Jª 	�ð 	á�
�JÊË @ 	á�
�KQK
 @YË@ 	á�
�KAë øYg@ ©¢�®�K ú


�æË @ �éÊÒm.Ì'AK. QK
 @ðYË@
. A �	��
@ Q¢�®Ë@ úÎ« �éJ
�̄ AJ. Ë @ øQ 	kB@ �èQK
 @YË@

T has 	à where we print 	P.

[16]

. ÈA�JÖÏ @ @ 	Yë úÎ« A �	��
@ h. ðQ�. Ë @ �èQK
 @YË �éK
 	P@ñÖÏ @ QK
 @ðYË@ �éjJ
 	®�Ë@ ú

	̄ © 	�	� 	à


@ A 	J 	JºÖß
 Y�̄ð

424 PAî 	DË @ ÈYªÓ . . . ù

	ªJ. 	�K
ð ] cited Mas, A �	��
@ ù


	ªJ. 	�K
ð: ù

	ªJ. 	�K
 A �	��
@ð Mas, Õæ�Q 	K: Õæ�Q�K Mas, ¡�ð ú


	̄
: �I�ñK.

Mas. 429 X' H. ' 	P ] X k. ' 	P TI, corr. Ana. 	á�
J.¢�®ËAK. ] 	á�
�J¢�® 	JË AK. I. 430 h k. ' è' @' 	P ] 	ájjë@ 	P I,

	ájjë add. in marg. @ 	P T, corr. Ana. 431 �ñ�̄ A 	JÊ� 	̄
] �ñ�̄

in marg. T. 437 A �	��
@ Q¢�®Ë@ úÎ« . . . Aî�	E

A 	̄

]

cited Mas. 439 ÈA�JÖÏ @ @ 	Yë úÍ@ . . . A 	J 	JºÖß
 Y�̄ð ] cited Mas, h. ðQ�. Ë @ �èQK
 @YË: h. ðQ�. Ë @ ½Ê 	̄ �èQK
 @YË Mas.
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440 PñjÖÏ @ 	áºJ
Ëð . è 	Q»QÓ Èñk 'X k. 'H. '@ �èQK
 @X 	á�
J.¢�®ËAK. QÖ �ß ú

�æË @ PAî 	DË @ 	�	� �èQK
 @X Éªj. 	J[ 	̄ ]

QK
 @ðYË@ øYg@ Q¢�̄ð ,k. ' è' @ PAî 	DË @ ÈYªÓ �èQK
 @X Q¢�̄ð , ù

	®	mÌ'@ I. ¢�®Ë@ 'X �é¢�® 	K Ñ �ëñ�J 	Kð , X' è'H.

ú

	̄ AêË Q¢�̄ ¡	mÌ'@ @ 	Yë ú


�æË @ �èQK
 @YË@ © 	�	� 	à

@ A 	J 	�Q 	« 	áºJ
Ëð .  'h' 	P ¡ 	k h. ðQ�. Ë @ �èQK
 @YË �éK
 	P@ñÖÏ @

 ñ¢ 	k É�	�ð , ¼'h'È ¡ 	k 	áºJ
Ëð ,k. ' è' @ ¡	mÌ A�K
 	P@ñÓ A �¢ 	k 'h �é¢�® 	K úÎ« 	Q�
j. 	J 	̄ . �éjJ
 	®�Ë@
. È'�'X  ' 	à'X 	P'Ð'X

445
	á�
�KQK
 @YË@ �AÖ �ß Aî�	E


@ ½Ë 	Xð . 	à'Ð Q¢�̄ Èñk Õæ�Q�K ' ' 	P ¡ 	k AëQ¢�̄ ú


�æË@ �èQK
 @YË@ �	à

@ 	á��
J. Ë @ 	áÔ 	̄

	àA�KAë Õæ�Q�K ½Ë 	YËð ,   k. ' 	P' @ 	á�
�ñ�̄ PY�®K. Aî 	D« AÒëYªK. 	á�
�JÊË @ PAî 	DË @ ÈYªÓ �èQK
 @YË 	á�
�JK
 	P@ñÖÏ @
. 	à' è 'Ð' è 	áK
YªJ. K. 	àA�KQK
 @YË@

Three circles and two lines that are mentioned in the text are missing in T. The only

internal circle in T, represented in gray, is incorrect. Missing or corrected objects are

represented with dotted lines. A number of labels have been moved. In T, � marks the

intersection of the gray circle and line k. @, 	¬ marks the intersection of the gray circle and

line H. X, and ¨ seems to mark the same point as h. T has   and 	P transposed. In fact,

another   has been written opposite the original 	P, marking the same point, presumably

added by a later reader who noticed the problem with the location of  .

�éK
 	P@ñÖÏ @ �èQK
 @YË@ AêÒ��®�K '¼'È AëQ¢�̄ ú

�æË@ PAî 	DË @ ÈYªÓ �èQK
 @YË �éK
 	P@ñÖÏ @ �èQK
 @YË@ �I	KA¿ AÖÏ 	áºËð

, X'H. ¡ 	k AëQ¢�̄ ú

�æË @ PAî 	DË @ 	�	� �èQK
 @X úÎ« 	á�
 	®�	JK. ' ' 	P ¡ 	k AëQ¢�̄ ú


�æË@ h. ðQ�. Ë @ �èQK
 @YË
450 Õæ�Q�K ú


�æË@ �èQK
 @YË@ �	à

@ 	á��
J. 	K 	à


@ I. j. J
 	̄ , 	¬'¨'� �èQK
@X É�JÓ '�' è YªJ. K. Õæ�Q�K A �	��
@ �èQK
 @YË@ è 	Yëð

440 Éªj. 	J 	̄
] Éªm.�

	' TI. 442  ' h' 	P ] ¡ 	k I. 444 	P' Ð' X ] 	áÓX TI, corr. Ana.  ' 	à' X ] ¡�
X I.

446   k. ' 	P' @ 	á�
�ñ�̄ PY�®K. ] ¡k 	P@ �ñ�®K. TI. 449 2 ú

�æË@ ] úÍ@ TI. 450 1 �èQK
 @YË@ ] QK
@ðYË@ TI.
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. 	¬ '¨ ú

�æ¢�® 	JK. QÖ �ß ' 	à'Ð Q¢�̄ Èñk

ÉJ. �̄ 	áÔ 	̄ .P �é¢�® 	K úÎ« AJ
�®�JÊK
 ú �æk ' 'X 'È'¼ ù
 ¢ 	k h. Q	m� 	'ð , ��'H. ' 	P'H. ù
 ¢ 	k É�	�ð
�èQK
@YK. ¡J
m× ¡ 	k úÎ« 	P ' �� 'h 'H. ¡�® 	K 	àñº�K , 	àA�JÖß
A�̄ ' ��'h'H. ' ��' 	P'H. ú


�æK
ð@ 	P �	à

@

'H. ¡�® 	J 	̄ ,P'X'H.
�éK
ð@ 	QË �éK
ðA�Ó ù
 ë ú


�æË@ ' ' 	P'H.
�éK
ð@ 	QË �éK
ðA�Ó 'P' ��'H.

�éK
ð@ 	Q 	̄ . �èYg@ð
¡ 	k ú


	̄ h' �� ¡ 	k H. Qå 	� 	áÓ 	àñºK
 ø

	YË@ð . �èYg@ð �èQK
 @YK. ¡J
m× ¡ 	k úÎ« A �	��
@ ' �� 'X 'P 455

©K. QÖÏ ð� A�Ó ñê 	̄ ½Ë 	Y» 	àA¿ @ 	X @ð . X'h ¡ 	k ú

	̄ 'h'H. ¡ 	k H. Qå 	� 	áÓ 	àñºK
 ø


	YÊË ð� A�Ó P'h
¡	mÌ ð� A�Ó ñë ø


	YË@ éÊ�JÓ ú

	̄ '�' è ¡	mÌ ð� A�Ó 	à' è ¡ 	k ú


	̄ A �	��
@ ' è'Ð ¡	m 	̄ . éÊ�JÓ ú

	̄ 'È'h ¡ 	k

. �èYg@ð �èQK
@YK. ¡J
m× ¡ 	k úÎ« A �	��
@ @ �	X @ ' 	¬ ' 	à '¨ 'Ð ¡�® 	J 	̄ , ¨' è ¡ 	k ú

	̄ ' è' 	¬

[17]

ÈA�JÖÏ @ @ 	Yë úÎ« Õæ�Q�K ú

�æË @ A �	��
@ h. ðQ�. Ë @ �èQK
 @YË �éK
 	P@ñÖÏ @ QK
 @ðYË@ 	Q» @QÓ �	à


@ 	á��
J. 	K 	à


@ ù


	ªJ. 	�K
ð
. @ �YK. @ �é 	®Ê�J	m× 	àñº�K 460

¡ 	k PñjÖÏ @ð , è 	Q»QÓ Èñk 'X k. 'H. '@ �èQK
 @X 	á�
J.¢�®ËAK. QÖ �ß ú

�æË @ PAî 	DË @ 	�	� �èQK
 @X 	áº�JÊ 	̄

ù
 ¢ 	k h. ðQ�. Ë @ �èQK
 @YË 	á�
�JK
 	P@ñÓ 	á�
�KQK
 @X ø
 Q¢�̄ð ,k. ' @ ¡ 	k PAî 	DË @ ÈYªÓ �èQK
 @X Q¢�̄ð , X' è'H.
�èQK
 @X �' 	à'X �IÊ�JÓ Èñk Õæ�Q 	Kð , ¼'�'X ' ' 	à'X 'h'Ð'X ' 	P'È'X  ñ¢ 	k É�	�ð . ¼'  'h' 	P
�èQK
@YË@ �	à


@ 	á��
J. Ë @ 	áÔ 	̄ . �� �é¢�® 	K úÎ« 	á�
 	®�	JK. 'Ð'È ¡ 	k Õæ��® 	Kð , 	¬'¨ ¡ 	k É�	�ð . 	¬'�'¨

AëQ¢�̄ ú

�æË @ �èQK
 @YË@ �	à


@ð , Ð'È Q¢�̄ úÎ« Õæ�Q�K h. ðQ�. Ë @ �èQK
 @YË �éK
 	P@ñÖÏ @ 'h' 	P AëQ¢�̄ úÎ« ú


�æË@ 465

. �' 	à Q¢�̄ Èñk Õæ�Q�K h. ðQ�. Ë @ �èQK
 @YË �éK
 	P@ñÖÏ @ '¼' 
¡ 	k Õæ��®�K B �� �é¢�® 	K �	à


@ ú


	æ«@ , é 	JJ
ªK. @ �Yg@ð AÒë 	Q»QÓ ��
Ë 	á�
�KQK
 @YË@ 	á�
�KAë �	à@ Èñ�̄ @ð
�éK
ð@ 	P 	àñº�K ½Ë 	YËð , h'¼ �ñ�®Ë �éK
ðA�Ó ' ' 	P �ñ�̄ �	à


@ ½Ë 	X 	àAëQK. . 	á�
 	®�	JK. A �	��
@ '�' 	à

' 	¬'¨ 'Ð'È A¢	m 	̄ , 	¬'� �ñ�®Ë �éK
ðA�Ó '¨' 	à �ñ�̄ð , ¼'X'h �éK
ð@ 	QË �éK
ðA�Ó ' 'X' 	P
¡ 	k �éJ.�	� 	áºËð , 	¬'Ð ¡ 	k úÍ@ 'Ð'X ¡ 	k �éJ.� 	�» '¨'È ¡ 	k úÍ@ 'È'X ¡ 	k �éJ.� 	� 	̄ . 	àAK
 	P@ñ�JÓ 470

'Ð'X ¡ 	k �éJ.�	�ð , ¨'È ¡ 	k ú

	̄ 'È'X ¡ 	k úÍ@ éÊ�JÓ ú


	̄ 'È'X ¡ 	k �éJ.� 	�» '¨'È ¡ 	k úÍ@ 'È'X
ú


	̄ 'È'X ¡ 	k �éJ.� 	� 	̄ . 	¬'Ð ¡ 	k ú

	̄ 'Ð'X ¡ 	k úÍ@ éÊ�JÓ ú


	̄ 'Ð'X ¡ 	k �éJ.� 	�» ' 	¬'Ð ¡ 	k úÍ@

451 Q¢�̄
] 	á¢�̄

I. 453 	P ]
	¬ TI, corr. Ana. ¡J
m× ¡ 	k ] ¡J
m× I. 455 h' �� ] l 	̄

I. 456 P' h ] X k.
TI, corr. Ana. 457 	à' è ] P' è TI, corr. Ana. 458

�èYg@ð �èQK
 @YK. ¡J
m× . . . ¡�® 	J 	̄
] cited Mas; ¡�®	J 	̄

:
�é¢�® 	J 	̄

IT, ¡�®	J 	̄
Mas, puncta Her;

	¬ ' 	à '¨ 'Ð: 	¬ 'Ð '¨ ' 	à Mas; A �	��
@ @ �	X @, ¡ 	k,
�èYg@ð omit. Mas.

459 @ �YK. @ �é 	®Ê�J	m× 	àñº�K . . . ù

	ªJ. 	�K
ð ] cited Mas, A �	��
@ omit. Mas. 461 	áº�JÊ 	̄

] 	áºJ
Ê 	̄
I. Èñk ] Èñk Èñk I.

463 �' 	à' X ] �ËX TI, corr. Ana. 465 h. ðQ�. Ë @ ] PAî 	DË @ ÈYªÓ TI, corr. Ana. Õæ�Q�K ] Õæ�Q 	K I. 466 h. ðQ�. Ë @ ]
PAî 	DË @ ÈYªÓ TI, corr. Ana. 467

�� ]
	¬ TI, corr. Ana. 468 	àñº�K ] 	àñºK
 I. 469 ¼' X' h ] È' X' h

TI, corr. Ana. 472
�éJ.� 	� 	̄

]
�éJ.�	�ð TI.



78 Sidoli and Berggren SCIAMVS 8

. 	¬'Ð ¡ 	k ú

	̄ 'Ð'X ¡ 	k úÍ@ éÊ�JÓ ú


	̄ 'Ð'X ¡ 	k �éJ.� 	�» '¨'È ¡ 	k ú

	̄ 'È'X ¡ 	k úÍ@ @ �	X @ éÊ�JÓ

	àñºK
ð , 	à'È ¡ 	k ú

	̄ 'È'� ¡	mÌ A�K
ðA�Ó '¨'È ¡ 	k ú


	̄ 'È'X ¡ 	k 	àñºK
 , �èQK
 @YË@ 	àñºËð
475 ¡ 	k úÍ@ éÊ�JÓ ú


	̄ 'È'X ¡ 	k �éJ.� 	� 	̄ . �'Ð ¡ 	k ú

	̄ 'Ð' 	à ¡	mÌ A�K
ðA�Ó ' 	¬'Ð ¡ 	k ú


	̄ 'Ð'X ¡ 	k
�I	KA¿ , A 	JË �YK. @ 	X @ð , �'Ð ¡ 	k ú


	̄ 'Ð' 	à ¡ 	k úÍ@ éÊ�JÓ ú

	̄ 'Ð'X ¡ 	k �éJ.� 	�» 	à'È ¡ 	k ú


	̄ 'È'�
Ð' 	à ¡ 	k úÍ@ ' 	à'È ¡ 	k ú


	̄ 'È'� ¡ 	k �éJ.� 	�» éÊ�JÓ ú

	̄ Ð'X ¡ 	k úÍ@ éÊ�JÓ ú


	̄ 'È'X ¡ 	k �éJ.�	�
Èñ£@ 'Ð'X ¡ 	k 	àA¿ 	X@ , éÊ�JÓ ú


	̄ 'È'X ¡ 	k 	áÓ Ñ 	¢«@ éÊ�JÓ ú

	̄ 'Ð'X ¡ 	k 	áºËð . �'Ð ¡ 	k ú


	̄

�' 	à ¡ 	kð . 	à'È ¡ 	k ú

	̄ 'È'� ¡ 	k 	áÓ Ñ 	¢«@ '�'Ð ¡ 	k ú


	̄ 'Ð' 	à ¡	m 	̄ , È'X ¡ 	k 	áÓ
480 ' ��'È ¡ 	k 	áºËð . 	à'È ¡ 	k 	áÓ Èñ£@ @ �	X @ '�'Ð ¡	m 	̄ , �'Ð ¡ 	k ©Óð ' 	à'È ¡ 	k ©Ó ¼Q�� ��Ó

	àñºK
 ú

�æË @ �èQK
 @YË@ 	Q»QÓ �� �é¢�® 	K ��
Ê 	̄ . �' �� ¡ 	k 	áÓ Èñ£@ @ �	X @ ��' 	à ¡	m 	̄ , ��'Ð ¡	mÌ ð� A�Ó

. AêË @ �Q¢�̄ �' 	à ¡ 	k

As stated in the text, line k. @ should be the diameter of the equator and point è the center

of circle X k. H. @. The lines ¼  , h 	P should not be perpendicular to axis H. è X. Line

h X should meet line k. @ and circle
	¬ ¨ X in a single point marked with Ð. The label k.

is missing although mentioned in the text. Labels 	à and � have been moved. In T, they

mark the intersections of lines   X, ¼ X with circle
	¬ ¨ X.

474 	àñºËð ] 	àA¾Ëð TI. 476 	à' È ] QË TI, corr. Ana. A 	JË �YK. ] A 	J 	®ËA 	g TI, permutatim (alternatim

in two mss) Her. 477 Ð' X ] ÈX I. Ð' 	à ] Õç'. I. 479 �' 	à ] ��. I. 481
��' 	à ]

��K. TI, corr.

Ana. AêË @ �Q¢�̄ . . . ��
Ê 	̄
] cited Mas,

��: ð Mas, AêË @ �Q¢�̄ . . . 	Q»QÓ: � ' 	à ú

�æ¢�® 	JK. QÖ �ß �èQK
 @YË@ 	Q»QÖÏ Mas,

	á��
J. 	K 	à

@ A 	KXP@ AÓ ½Ë 	Xð add. Mas.

�� ]
	¬ TI, corr. Ana. 482 �' 	à ] ��
 I.
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[18]

	áºË �éjJ
 	®�Ë@ ú

	̄ �èPñ�m× ù
 ë ��
Ë ú


�æË @ h. ðQ�. Ë @ �èQK
 @YË �éK
 	P@ñÖÏ @ QK
 @ðYË@ 	àA¾ÖÏ , 	à
�
B@ I. m.�'
ð

©¢�®�K ú

�æË @ QK
 @ðYË@ ú


	æ«@ , �èQºË@ 	áÓ �éÓñ�QÓ Q�
 	« ù
 ëð Qê 	¢�� B ú

�æË@ �éª¢�®Ë@ ú


	̄ AîD	�ªK. ©�®K

. è 	Q»QÓ Èñk 'X k. 'H. '@ �èQK
 @X 	á�
J.¢�®ËAK. QÖ �ß ú


�æË @ �èQK
 @YË@ A �	��
@ © 	�	� 	à

@ , @ �YK. @ �éJ
 	®	mÌ'@ �èQK
 @YË@ 485

,k. ' @ ¡ 	k PAî 	DË @ ÈYªÓ �èQK
@X Q¢�̄ð , ù

	®	mÌ'@ I. ¢�®Ë@ 'X �é¢�® 	K Ñ �ëñ�J 	Kð , X'H. ¡ 	k PñjÖÏ @ 	áºJ
Ëð

, �èQK
 @YË@ è 	Yë ©£A�®K
 ú

�æË @ �èQK
 @YË @ Q¢�̄ð , h' 	P ¡ 	k A�Üß
@X �éJ
 	®	mÌ'@ AêË �éK
 	P@ñÖÏ @ �èQK
 @YË@ Q¢�̄ð

. È'¼'  ¡ 	k h. ðQ�. Ë @ �èQK
 @YË �éK
 	P@ñÖÏ @

Line 	à X should pass through point h. If it did, however, the outer circle would extend

outside the space left for the diagram. In T, @ and the dotted part of line k. @ are missing,

although mentioned in the text.

	áºJ
Ëð , X' è ¡	mÌ A�K
 	P@ñÓ A �¢ 	k h. Q	m� 	'ð . h'Ð' 	P 	áº�JËð , �èQK
 @X 	�	� 'h' 	P ¡ 	k úÎ« Õæ�Q 	Kð
Õæ�Q�K ú


�æË@ �èQK
 @YË@ �I	KA¿ , �'È'X 	à'h'X ù
 ¢ 	kð 	à k. ' @ ¡ 	k A 	Jk. Q 	k@ 	à

@ A�	K


@ ÉJ. �̄ 	áÔ 	̄ . Ð'¼ ¡ 	k 490

Õæ�Q�K ú

�æË@ �èQK
 @YË@ �I	KA¿ð , �éjJ
 	®�Ë@ ú


	̄ A �Üß
@X �éJ
 	®	mÌ'@ �èQK
 @YË@ ù
 ë , 	à'¨ �èQK
 @X Aî�	E

A¿ , 	à' è YªJ. K.

ú
æ��®K. A �Üß
@X �éJ
 	®	mÌ'@ �èQK
 @YË@ Õæ��®�Kð , � �é¢�® 	JK. A �	��
@ ù
 ë QÖ �ß 'È'¼'  ¡ 	k úÎ« ú

�æË@ �èQK
 @YË@ ÈYK.

Èñk A 	JÖÞ�P 	à

@ A�	K


@ ½Ë 	Xð . AÒîD
j¢�Ë ¼Q�� ��Ó É� 	̄ ñë 'Ð'¼ ¡ 	k 	àA¿ 	X@ , Ð'h �ñ�®K. �éîD
J. ��

, ��'P'¼'Ð ¡ 	k A 	Jk. Q 	k@ð , ��'P' �� �èQK
 @X A 	JÖÞ�P A�	K

A¿ , h'Ð' 	P �èQK
 @YË �éK
ðA�Ó �èQK
 @X ' è 	Q»QÓ

. P' �� ' ��' �� ú
æ�ñ�®K. 	á�
�JîD
J. �� ' 	¬' 	à '¨' 	à ú
æ�ñ�̄ A 	JÊªk. , 	¬'P' è '¨' ��' è ù
 ¢ 	k A 	Jk. Q 	k@ð 495

'È'  ¡ 	k úÎ« Õæ�Q�K ú

�æË @ h. ðQ�. Ë @ �èQK
 @YË �éK
 	P@ñÖÏ @ �èQK
 @YË@ 	àñº�Kð . Ð'h �ñ�®K. 	á�
�JîD
J. �� 	àA 	Kñº�J 	̄

483
�èQºË@ 	áÓ . . . I. m.�'
ð ] cited Mas, h. ðQ�. Ë @ �èQK
 @YË: h. ðQ�. Ë @ ½Ê 	̄ �èQK
 @YË Mas, ��
Ë: �I��
Ë Mas,

ù
 ë omit. Mas,
�èQºË@ 	áÓ: �èQºË@ ú


	̄
Mas. 490 	à k. ' @ ] Q 	k


@ I. 	à' h' X ] QkX

I. 491 	à' è ] 	áÓ TI, corr. Ana. 492 Õæ��®�Kð ] Õæ

�®�Kð TI. 494 ��' P' �� ]

�Q�̄
I. 496 	àA 	Kñº�J 	̄

] 	àA 	KñºJ
 	̄
I. 	á�
�JîD
J. �� ] 	á�
îD
J. �� TI. 	àñº�Kð ] 	àñºK
ð I.
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. 	¬ '� '¨ ¡�®	JK. �éjJ
 	®�Ë@ ú

	̄ QÖ �ß

[19]

Õæ�Q�K ú

�æË @ h. ðQ�. Ë @ �èQK
 @YË �éK
 	P@ñÖÏ @ �èQK
 @YË@ �èPñ�Ë@ è 	Yë É�JÓ ú


	̄ A 	JÒ �ëñ�K 	à@ð A�	K

@ 	á��
J. Ë @ 	áÓð

ø

	YË@ 	�QªÊË '¼'X ¡ 	k A 	Jk. Q 	k@ð , ¼'X ¡ 	k úÎ« Õæ�Q�K ú


�æË @ �èQK
 @YË@ AëA 	JÊªk. A�	K

A¿ , X �é¢�® 	K úÎ«

500 ¡	mÌ'@ @ 	Yë 	àA¿ , 	à k. ' @ ¡ 	k úÎ« �éÖß
A�̄ AK
 @ð 	P úÎ« '�'È'Ð ¡ 	k 'È �é¢�® 	K úÎ« A 	K 	Qk. @ð , èA 	KQ» 	X
ú


�æË @ �éÒJ
�®�J�ÖÏ @  ñ¢	mÌ'@ ©J
Ôg.
�	à


@ ½Ë 	Xð . ¼' 'X ¡ 	k AëQ¢�̄ ú


�æË@ �èQK
 @YË@ 	àA¾Ó �éjJ
 	®�Ë@ ú

	̄

É� 	®Ë@ð , �èQK
 @YË@ i¢� ñëð , Yg@ð i¢� ú

	̄ ù
 ë �èQK
 @YË@ è 	YîE. �èPAÓ 'X �é¢�® 	K 	áÓ h. Q	m��'

	�	� �èQK
 @X i¢� �	à

@ ½Ë 	Xð , �'È'Ð ¡ 	k ñë ,PAî 	DË @ ÈYªÓ �èQK
 @X i¢�Ëð i¢�Ë@ @ 	YêË ¼Q�� ��ÖÏ @

	á�
j¢�Ë@ 	áK

	Yë 	áÓ Yg@ð É¿ úÎ« �éÖß
A�̄ AK
 @ð 	P úÎ« ù
 ë 'k. '@ ¡ 	k úÎ« ú


�æË@ A �	��
@ PAî 	DË @
505 . AÒëA 	KQ» 	X 	áK


	YÊË @

[20]

QK
@ðYË@ �éÒ�j. ÖÏ @ �èQºË@ ú

	̄ AÖÏ �AJ
�̄ �éjJ
 	®�Ë@ ú


	̄ Õæ�QK
 	à

@ I. m.�'
 A�	J��
K. ø


	YË@ ÈA�JÖÏ @ @ 	Yë úÎª 	̄

A�K
 	P@ñÓ Aî 	DÓ 	àA¿ AÓð PAî 	DË @ 	�	� QK
 @ðX 	áÓ Aî 	DÓ 	àA¿ AÓ ,PAî 	DË @ ÈYªÓ �èQK
@X �IÒ��. Yg. ñ�K ú

�æË@

. h. ðQ�. Ë @ ¡�ð ú

	̄ QÖ �ß ú


�æË@ �èQK
 @YË@ I. �.��. Yg. ñ�K ú

�æË @ QK
 @ðYË@ð ,PAî 	DË @ ÈYªÖÏ

QK
 @ðYË@ ©J
Òm.Ì'ð �èQK
 @YË@ è 	YêË @ �	Q»QÓ A �	��
@ 	àñºK
 PAî 	DË @ ÈYªÓ �èQK
@X I. ¢�̄ �	à

@ ÉJ. �̄ 	áÓð

497
	¬ '� '¨ ]

	¬' � I. 498 X �é¢�® 	K úÎ« . . . 	á��
J. Ë @ 	áÓð ] cited Mas, h. ðQ�. Ë @ �èQK
 @YË: h. ðQ�. Ë @ ½Ê 	̄ �èQK
 @YË
Mas, X �é¢�® 	K úÎ« Õæ�Q�K: ÈX AëQ¢�̄ úÎ« Mas. 499 AëA 	JÊªk. ] AÒëA 	JÊªk. T. 	�QªÊË ] 	�Q 	ªÊË I, ad latitudinem

Her. 503 AÒëA 	KQ» 	X 	áK

	YÊË @ . . . �	à


@ ½Ë 	Xð ] cited Mas, k. ' @: YK. Mas, ù
 ë: ñë Mas, 	áK


	Yë omit. Mas.

504 AK
 @ð 	P úÎ« ù
 ë ] @ð 	P ù
 ë I. 509 ©J
Òm.Ì'ð ] ©J
Òm.�'ð I.
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�èQK
 @YË@ I. ¢�̄ �	à

@ð . �éÒJ
�®�J�Ó A �£ñ¢ 	k ½Ë 	X ©Ó 	àñº�K PAî 	DË @ 	�	� QK
@ðX ©J
Ôg.

�	à

A 	̄ , AêË �éK
 	P@ñÖÏ @ 510

ù
 ë ú

�æË@ Q 	kB@ QK
@ðYË@ 	áÓ �èYg@ñË Bð �èQK
 @YË@ è 	YêË @ �	Q»QÓ 	àñºK
 B h. ðQ�. Ë @ ¡�ð ú


	̄ QÖ �ß ú

�æË@

A �¢ 	k 	àñº�K ú

	æ«@ , 	Q»QÓ CK. 	àñº�K QK
@ðYË@ è 	Yë 	áÓ �èYg@ð �	à


@ð . AêË �éK
 	P@ñÖÏ @ QK
 @ðYË@ QK
A 	¢ 	�

�	à

@ ½Ë 	Xð , ½Ë 	X 	¬C 	g 	àñº�K I. ¢�®Ë@ @ 	YîE. QÖ �ßð Õæ�Q�K ú


�æË@ �éÒJ
 	¢ªË@ QK
 @ðYË@ �	à

@ð . A �ÒJ
�®�J�Ó

QK
@ðYË@ 	Q» @QÓ úÎ« ©�®�K , A �ÒJ
�®�J�Ó A �¢ 	k 	àñº�K 	á�
J.¢�®ËAK. QÖ �ß ú

�æË @ �èQK
 @YË@ 	àA¾Ó ù
 ë ú


�æË@ �èQK
 @YË@
. �éK
ðA���Ó Q�
 	« 	àñº�K Aî�	E


@ Q�
 	« QK
@ðX �éJ
�̄ AJ. Ë @ QK
 @ðYË@ 	àñº�Kð , h. ðQ�. Ë @ �èQK
 @YË �éK
 	P@ñÖÏ @ 515

	à

@ PAî 	DË @ ÈYªÓ �èQK
 @X úÍ@ �AJ
�®K. Yg. ñ�K ú


�æË @ ¨A 	�ðB@ ú

	̄ A�	JºÒÓ 	àñºK
 	à


@ ½Ë 	X 	áÓ I. k. ð

�èQK
@YË �éK
 	P@ñÖÏ @ QK
 @ðYË@ I. �	� úÎ« Õæ��®�K �èQ¢�Öß. QK
 @ðYË@ ©J
Ôg. Õæ�Q 	K 	à

@ Q�
 	« 	áÓ I. » @ñºË@ Õæ�Q 	K

úÍ@ �AJ
�®K. Yg. ñ�K ú

�æË @ ¨A 	�ðB@ ú


	̄ A�Ó@ð . AëYgð PAî 	DË @ ÈYªÓ �èQK
@X �éÒ��®K. ð PAî 	DË @ ÈYªÓ
AëQ��» @ ð@ QK
 @ðYË@ ©J
Ôg. Õæ�Q 	K 	à


@ I. m.�'
 	áºË . ½Ë 	X 	áºÖß
 ��
Ê 	̄ h. ðQ�. Ë @ ¡�ð ú


	̄ QÖ �ß ú

�æË@ �èQK
 @YË@

. I. » @ñºË@ AîD

	̄ © 	�ñ�K 	à


@ I. m.�'
 ú


�æË @ © 	�@ñÖÏ @ úÎ« AîE.
�

ÈY�J�	� ú
¾Ë 520

�èQºË@ ú

	̄ ÉÒª�J��
 AÓ 	á�
ÖÞ�QË @ 	áK


	Yë 	áÓ Yg@ð É¿ ú

	̄ ú


	̄ ñ�J��
 	à

@ ú


	̄ PñÓB@ iÊ�@ 	áÓð
	�	� QK
 @ðX 	áÓ Aî 	DÓ 	àA¿ AÓ ,PAî 	DË @ ÈYªÓ �èQK
 @X I. �.��. [Yg. ñ�K] ú


�æË@ QK
 @ðYË@ © 	�	� 	à

@ �éÒ�j. ÖÏ @

ú

�æË @ �èQK
 @YË@ I. �.��. Yg. ñ�K ú


�æË @ QK
 @ðYË@ð ,PAî 	DË @ ÈYªÓ �èQK
 @YË �éK
 	P@ñÖÏ @ QK
 @ðYË@ 	áÓ 	àA¿ AÓð PAî 	DË @
ú


	̄ ½Ë 	X ©J
Ôg. Õæ�P 	áºÖß
 B 	àA¿ 	àA
	̄ . �éK. ðQå	�ÖÏ @ Q» B@ éJ
Ê« AÓ ÈA�JÓ úÎ« h. ðQ�. Ë @ ¡�ð ú


	̄ QÖ �ß
	àA¿ 	X@ , h. PX �I��. ð@ h. PX �IÊ�JK. ð@ 	á�
�Jk. PYK. QÖ �ß ú


�æË @ QK
 @ðYË@ AîD
	̄ Õæ�Q 	K 	à

@ ù


	ªJ. 	�J
 	̄ , �éjJ
 	®�Ë@ 525

h. PX ù
 ë ú

�æË@ �ék. PX 	á�
�JÊ�JË ¼Q�� ��Ó XY« ù
 ë X@Y«B@ �é�JÊ�JË @ è 	Yë �	à


@ ÉJ. �̄ 	áÓ , ¡� ��ñ�JÓ �Õæ�P ½Ë 	X

	á�
K. ð PAî 	DË @ ÈYªÓ �èQK
 @X 	á�
K. AÒJ
 	̄ YªJ. Ë @ ù
 ëð , �ék. PX 	áK
Qå��«ð ©K. PBð , h. ðQ�. Ë @ 	áÓ Yg@ð É¿
	á�
J. Ê �® 	JÖÏ @ A�KQK
 @X QK
 @ðYË@ 	áÓ Õæ�QK
 AÒªÓ ©�®K
 ú �æk , I. K
Q�®�JËAK. 	á�
J. Ê �® 	JÖÏ @ ú


�GQK
 @X 	áÓ �èYg@ð É¿
ÈA�JÖÏ @ @ 	Yë Q�
 	« úÎ« Yg. ñ�K ú


�æË@ XAªK. B@ ú

	̄ 	àñºK
 Bð , h. ðQ�. Ë AK. QÖ �ß ú


�æË @ PAî 	DË @ 	�	� QK
 @ðXð
. 	¬C�J 	k@ 530

Éë@ 	áÓ �ñJ
ÒÊ¢�. H. A�J» Õç�'
�èQºË@ ¡J
��. iJ
¢��� ú


	̄ �éK
 	XðC�̄

ÕÎ�ð éJ. m�� éË
�
@ éJ
�. 	K YÒm× úÎ« é�K@ñÊ�ð é

�
ÊË YÒmÌ'@ð

513 	àñº�K ] 	àñºK
 I. 514 	àñº�K ] 	àñºK
 I. úÎ« ] éJ
Ê« TI. 518 PAî 	DË @ . . . �éÒ��®K. ð ] in marg. T,
�èQK
 @X: QK
@ðX

I. 521 ú

	̄ ñ�J��
 ] ú


	̄ ñ�J��� I. 522 Yg. ñ�K ] omit. TI. 527 PAî 	DË @ ÈYªÓ �èQK
 @X ] ÈYªÓ add. I. 528 AÒªÓ ] AêªÓ I.

529 Bð ] C 	̄
I. 531 �ñJ
ÒÊ¢�. ] �ñÒJ
Ê¢�. I. 533 éJ
�. 	K ] omit. I. 533 ÕÎ�ð éJ. m�� ] illegible T.
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V Translation

In the name of God, the Merciful, the Compassionate,
and may God bless Mohammad

The treatise of Ptolemy, of the people of Claudia

On Flattening the Surface of the Sphere He said

[1]

Since it is possible, Oh Syrus, and useful in many subjects that there be, in a flat
surface, the circles that occur on the solid sphere, as though spread out, I considered
it necessary with regards to the expert, that I write a treatise for whoever desired
knowledge of this, in which I briefly show how it is possible to draw the ecliptic, the
circles parallel to the equator, and the circles known as the meridians, so that all of
what occurs in this will be consistent with what is apparent in the solid sphere.

This aim we intend may be prepared for us when we use straight lines representing[1.2]
the meridians and arrange the circles parallel to the equator as a configuration, in
which it is, firstly, prepared that the drawn great circles, of the inclined circles
tangent to circles parallel to the equator, which are the same distance from it in
both directions, always bisect the equator. This is congruous for us in the following
manner.

We assume the equator is circle ABGD, and that it is around center E. We draw[See Fig. 1]
in it two diameters intersecting at right angles, which are line AG and line BD. We
imagine these lines representing meridians, and point E as the north pole, because
it is not possible to place the other pole on a plane surface, since its plane extends
without limit, as we shall show in what follows.23 Since the north pole is always
visible in our countries, it is more appropriate that we specifically use it, in that we
want a drawing of it.

Clearly, the circles parallel to the equator that are north of the equator should
be drawn inside circle ABGD, while the parallel circles that are to the south must
be drawn outside of it. We produce lines AG, BD and cut off two equal arcs of the
circle on either side of point G, which are GZ and GH. We join line DTZ, and line
DHK. We make point E a center, and we draw circle TL with a distance of line
ET , and circle KM with a distance of line EK.

Then, I say that these circles are the correlates of two of the circles on the solid[1.3]
sphere that are the same distance from the equator on either side, and that the

23In fact, this is never explicitly demonstrated in the extant treatise but it becomes increasingly

obvious as the work progresses. Maslama provides an argument for this claim in his note accompa-

nying Planis. 4–7 [Kunitzsch and Lorch 1994, 14–16].



SCIAMVS 8 Ptolemy’s Planisphere 83

ecliptic, drawn about a center bisecting line TM such that it touches these circles
at point T and at point M , bisects circle ABGD, that is, it passes through point B

and point D. The proof of this is that we join line DNM . So, because arc AN is
equal to arc GH, which is equal to arc GZ, arc NDZ is a semicircle. Hence, angle
MDT is right24 and the circle drawn about diameter TM , of right triangle MDT ,
passes through point D. Hence, it bisects the equator.

So, it is clear from this that, for all circles parallel to the equator, if we cut off [1.4]
arcs on both sides of point G, whose magnitude depends on the distance of each of
these circles from the equator, and we join the endpoints of the arcs with straight
lines to point D, and we make what the straight lines cut off from line EK distances,
and we make point E a center, and we describe circles, then the analog in that is in
this way that we set out.25
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Figure 1: Planisphere 1.

Clearly, if we assume both of arcs ZG and GH to be approximately 23; 51◦ (in the
degrees in which the equator, circle ABGD, is 360◦), which is the distance between
the equator and both of the tropics along the circle drawn through the poles of the
equator,26 then, of the two circles drawn through point T and point M , circle TL is

24Since it is the angle in a semicircle (Elem. III 31).

25The word that we have translated as “analog” (�AJ
�̄) plays an important role in the text. A qiyās

is a sort of reference, analogy or measure, although not generally in a numeric sense. In two cases

in this text, it is used to discribe the relationship that the planisphere bears to the solid sphere

(lines 33 & 506, see also page 108), while in four cases it refers to the use of coordinate systems to

reference star positions (lines 426, 427, 516, 518, see also pages 103 and 109).

26This circle could be the solstitial colure, or indeed any meridian circle.
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the summer tropic and circle KM is the winter tropic. In this way, the circle drawn
through point M , point B, point T and point D (the circle through the signs) is
tangent to the tropics at point T (the summer tropic) and at point M (the winter
tropic); and it bisects the equator at points B and D.27 So, point B is the vernal
point and point D the autumnal point, because the motion of the cosmos is indeed
as though from point B toward point A and then to point D. It is neither possible[1.5]
for a division of the ecliptic into signs to take place through equal arcs, nor again
for its division into four parts to take place through equal arcs. Rather, its division
into what is required is strictly in this way: that is, the beginnings of the signs are
put at the points at which circles parallel to the equator divide the ecliptic, which
are drawn according to the explained method, with the distance consistent with the
distance of each of the signs from the equator in the solid sphere. For, at this degree
alone, all of the straight lines passing through pole E, representing the meridians,
cross the ecliptic at parts that are the correlates of parts diametrically opposite on
the solid sphere.28

[2]

Every horizon circle, drawn in the same way as the ecliptic, not only bisects the
equator but also functionally bisects the ecliptic. That is, it is also drawn through
parts that are functionally the correlates of parts diametrically opposite on the solid
sphere.29

Let the equator be circle ABGD around center E. The circle through the signs[2.2]
[See Fig. 2] is circle ZBHD and it bisects the equator at point B and point D. We pass an

arbitrary straight line through the pole E representing a meridian. Let it be line
ZAEHG.

I say that points Z and H are the correlates to diametrically opposite points on
the solid sphere. That is, circles parallel to the equator that are drawn through these
points will cut off equal arcs on both sides of the equator, in the way we described,
just as occurs on the solid sphere as well.30

The proof of this is that we produce a straight line, line ET , from point E at
right angles to line AG. We join line AT , line GT , line ZKT and line THL. So,

27Planis. 1.3.

28In other words, only when the signs are constructed in the manner described, will the degrees

determined as the beginnings of opposite signs be joined by straight lines that pass through the

center of the equator.

29It is odd that these points should be said to be “functionally correlates” (QKA 	¢ 	� �èñ�®ËAK.), since they

are, in fact, the correlates. This expression is found again in Planis. 15 (see page 103).

30Ptolemy simply assumes this as an obvious fact of the relationship between the ecliptic and the

meridian circles. His justification for this assumption probably comes from considerations of solid

geometry (see the commentary, especially page 117).
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Figure 2: Planisphere 2.

clearly, angle ATG is right, for arc ATG is a semicircle.31 Since the product of line
ZE by line EH is equal to ED squared, that is, equal to ET squared,32 the ratio
of line ZE to line ET is as the ratio of line ET to line EH.33 [So,] triangle ZTH

is also right angled, and angle ZTH is right.34 Hence, angle ZTL is equal to angle
ATG. Then, if we omit the common angle ATH, the remaining angle KTA will
equal the remaining angle HTG. So, arc KA is also equal to arc GL. Now, we
have shown that since lines TKZ and TL join the endpoints of arcs that are the
same distance from the equator, and their origin35 is from the point, the distance
of which from point A and point G is a quadrant, which is point T , [then] on line
ZG we get point Z and point H, which are the points through which are drawn two
circles parallel to the equator the same distance from it.36 Therefore, line ZEH has
passed through points that are functionally on the diameter of the ecliptic.

[3]

I say that even if we draw another circle, inclined to the equator, representing
the horizon circle, so that this circle bisects the equator alone, then the two places
of the intersection of this circle and the circle through the signs are functionally

31Elem. III 31.

32By Elem. III 35 in circle ZBHD, and since ED and ET are radii of circle ABGD.

33Elem. VI 17.

34Elem. VI 6.

35Literally, “the place from which they are drawn” ( AÒêk. Q	m×). This probably carries some notion of

the point of projection.

36There does not appear to be a specific proof of this claim in Planis. 1. Nevertheless, it does follow

from Planis. 1.3 & 1.4.
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diametrically opposite.37 That is, the line joining them passes through the center of
the equator.

Again, let the equator be circle ABGD around center E, and the ecliptic circle[See Fig. 3]
HBTD, and let it bisect the equator along diameter BED.38 The horizon circle is
circle HATG, and this circle also bisects the equator along diameter AEG.39 Let
the intersection common to the ecliptic and the horizon circle be point H and point
T . Then, I say that if we join point H with center E by a straight line, representing
a meridian, and we extend that line rectilinearly, it will arrive at point T .
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Figure 3: Planisphere 3.

The proof of this is that we join line HE and produce it rectilinearly until it
intersects the horizon circle, circle HAG, at point T .40 Then, I say that point T is
also common to the ecliptic, circle HBTD.41 So, because lines HT and AG have
been produced in circle HATG intersecting at point E, line HE by line ET is equal
to line AE by line EG, and likewise, line AE by line EG is equal to line BE by
ED.42 Hence line BE by ED is equal to HE by ET . Hence, lines BD, TH are in

37The claim is that if an r-horizon is drawn with the only condition being that it bisect the equator,

then its intersections with the r-ecliptic can also be shown to represent diametrically opposite points.

Compare this statement with Planis. 2.1.

38Planis. 1.3.

39Although the proof in Planis. 1.3 is stated in terms of the ecliptic, it applies to any great circle

inclined to the equator.

40Since, by Planis. 2, HET is a diameter of the horizon.

41It would have been clearer if Ptolemy had initially differentiated between T as the intersection of

HE and circle HAG and T as the intersection of circle HAG and circle HBD and then proceeded

to show that they were one and the same (see the commentary, especially page 118).

42By Elem. III 35 in circle HATG and again in circle ABGD.
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a single circle.43 From this it follows that point T is on the ecliptic, circle HBTD,
and we had stated that it is on the horizon circle, circle HATG. So, the line joining
the two places of the intersection of the ecliptic and the horizon is a line that passes
through the center of the equator, point E. So, it is clear from this that the horizon
circle and the ecliptic intersect at functionally diametrically opposite points. qed.

[4]

Then, having previously demonstrated this, let us next consider the ratio of the
radii of the parallel circles drawn according to the signs of the ecliptic44 to the
radius of the equator, which we previously set out, so that we come to know that
their rising-times are also found numerically45 to be consistent with what is manifest
with respect to the solid sphere.

Again, let the equator be circle ABGD around center E. We produce two of its [4.2]
[See Fig. 4]diameters, intersecting at right angles, AG and BD. We produce line AG rectilin-

early to point Z. We cut off two equal arcs, GH and GT , on either side of point G.
We join line DKH and line DTZ. We have previously explained, of circles parallel
to the equator that are the same distance from it, the one of them to the north is
indeed drawn about center E with distance EK, while that to the south [is drawn]
about center E with distance EZ.46

The ratio of line EZ to line EK is evident to us in this way.47 Because arc GH

is equal to arc GT , arc BH and arc BGT together are a semicircle.48 So, the angles
opposite them, that is angle EDK and angle EDZ, are together equal to a right
angle.49 Also, angle EDK with angle EKD is right,50 so angle EDZ is equal to
angle EKD. Hence, right triangle ZED is similar to right triangle DEK, so the

43Converse of Elem. III 35.

44These circles are drawn through the beginnings of the signs, parallel to the equator (see Planis.

1.5).

45The expression is literally “by number” (XYªËAK.), and probably translates something like diĂ tÀn

ĆrijmÀn, which occurs twice in the Almagest, where it denotes the process of producing results

through computation [Heiberg 1898–1903, p. 1, 239 & 339; Toomer 1984, 157 & 211].

46Planis. 1.2.

47The following passage is the first piece of metrical analysis in the text. Metrical analysis was

a type of Greek mathematics that was used to show generally that certain quantities could be

computationally derived when other quantities were assumed as given. Although it is clear from

the context that this is metrical analysis, the passage is unusual in making no mention of given

magnitudes.

48
_

BH = 90◦ −
_

GH and
_

BT = 90◦ +
_

GH, so
_

BH +
_

BT = 180◦.
49Elem. III 31.

50Elem. I 32.
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ratio of line ZE to line ED is as the ratio of line DE to line EK.51 The ratio of arc
BT to the supplement – that is, the arc equal to arc BH – is, however, as the ratio
of angle EDZ to angle EZD, and as the ratio of the arc on line EZ, in the circle
drawn around right triangle DEZ, to the arc on line ED, in this same circle.52 So,
the ratio of the chord of arc BT to the chord of the supplement, that is arc BH, is
as the ratio of line ZE to line ED,53 and as the ratio of line DE to line EK.54
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Figure 4: Planisphere 4.

Then having previously deduced that, in a similar diagram we first assume that[4.3]
both of the arcs GH and GT are 23; 51, 20◦ (in the degrees in which circle ABGD is
360◦), which are the degrees that we assumed for the distance between the equator
and both of the tropics in our discussion with respect to the solid sphere as well.55

Then arc BT is 113; 51, 20◦ (in the degrees in which this circle is 360◦), and arc
BH, the supplement, is 66; 8, 40◦. The chord of arc BT is 100; 33, 28p (in the parts
in which the diameter is 120p, for we have assumed this in the Almagest), and chord
BH is 65; 29p (of these parts). [So,] the ratio of line ZE to line ED, and the ratio
of line ED to line EK is the ratio of 100; 33, 28p to 65; 29p. Therefore, line EZ, the
radius of the winter tropic, is 92; 8, 15p (in those parts in which the radius of the

51Elem. VI 4.

52Both of these statements follow from the fact that equal arcs subtend equal angles (Elem. III 26).

53This follows from the fact that equal chords subtend equal arcs (Elem. III 28). In T, a marginal

gloss, perhaps in the original hand, reads, “Note: Because the ratio of BT to TD is as the ratio of

the side of angle BDT , that is line EZ, to the side of angle DBT , that is line DE.”

54Since 4WDZ is similar to 4EDK (Elem. VI 4).

55In Alm. I 12, Ptolemy claims to have measured this angle using a special instrument. In fact,

however, he simply assumes a traditional value of 11/83 of the circumference of a circle [Heiberg

1898–1903, p. 1, 67–68; Toomer 1984, 63, n. 75].
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equator, line ED, is 60p), and the radius of the summer tropic is 39; 4, 19p.56

From this it is evident that the diameter of the ecliptic (since it is tangent to these
two circles at the endpoints of its diameter) is the sum of their radii, 131; 12; 34p (in
the parts in which radius of the equator is 60p), and that the radius of the ecliptic
is 65; 36, 17p. The line between its center and the center of the equator is 26; 31, 58p

(of these parts).57

[5]

Again, we assume both arcs HG and GT to be 20; 30, 9◦ – which is the distance [See Fig. 4]
between the equator and [each of] the two circles parallel to the equator that cut off
30◦ of the circle through the signs on both sides of the solstitial points – so that arc
BT is 110; 30, 9◦ and its chord is 98; 35, 57p, and arc BH is 69, 29, 51◦ and its chord
is 68; 23, 51p.58 Hence, the ratio of line ZE to line ED, and also the ratio of line
ED to line EK, is the ratio of 98; 35, 57p to 68; 23, 51p.59 So, of the parts in which
line ED is 60p, line EZ is 86; 29, 42p, and line EK is 41; 37, 15p (of these parts).60

[6]

In this way, we assume both arcs HG and GT to be 11; 39, 59◦, which is the [See Fig. 4]
distance, along the great circle drawn through the poles of the equator, between
the equator and [each of] the two circles parallel to it that cut off 60◦ from the

56The beginning of this sentence is somewhat garbled in the text. It literally reads, “Therefore line

ED, which is the radius of the equator, in the parts of which it is 60p, in these parts the radius of

the winter tropic, line EZ, is 92; 8, 15p, and the radius of the summer tropic is 39; 4, 19p.” Hermann

has

quoniam igitur ed semidiametros circuli recti absolute LX partium est, metiuntur quidem

ex eis partibus XCII puncta VIII secunde XV linaem ez semidiametrum hyemalis tropici,

semidiametrum autem estiui partes XXXIX puncta IIII secunde XVIIII

that is, “Since therefore, ED, the radius of the right circle, is simply 60p, line EZ, the radius of

the winter tropic, in fact measures 92; 8, 15p (of these parts), while the radius of the summer is

39; 4, 19p” [Heiberg 1907, 234].

57Since the diameter of the ecliptic is the sum of the radii of the tropics, the segment between the

center of the ecliptic and the center of the equator is the radii of the difference between the radii of

the ecliptic and that of the summer tropic, that is, 65; 36, 17p − 39; 4, 19p = 26; 31, 58p.

58The value 20; 30, 9◦ is derived in Alm. I 14 and tabulated in Alm. I 15 [Heiberg 1898–1903, p. 1,

76–88; Toomer 1984, 69–72].

59The argument for this is given in Planis. 4.2 (see page 88).

60Calculation gives (98; 35, 57p/68; 23, 51p)60p = 86; 29, 37p and (68; 23, 51p/98; 35, 57p)60p =

41; 37, 18p respectively.
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circle through the signs on both sides of the solstitial points.61 So, the whole arc
BT is 101; 39, 59◦ and its chord is 93; 2, 14p, and arc BH is 78; 20◦ and its chord is
75; 47, 23p.62 So, the ratio of line ZE to line ED and the ratio of line DE to line
EK is the ratio of 93; 2, 14p to 75; 47, 23p,63 and, of the parts in which line DE is
60p, line EZ is 73; 39, 7p and line EK is 48; 52p (of these parts).64

[7]

Likewise, if we make both arcs HG and GT 54◦, which is the distance, on either[See Fig. 4]
side of the equator, of [each of] the circles parallel to the equator that are tangent to
the horizon at the latitude of Rhodes, which is the horizon we used as an example
on the solid sphere – then, in this case as well, arc BT is 144◦ and its chord is
114; 7, 37p, and arc BH is 36◦ and its chord is 37; 4, 55p. The ratio of line ZE to
line ED, and line DE to line EK, is the ratio of 114; 7, 37p to 37; 4, 55p.65 So, of
the parts in which line ED is 60p, line EZ again sums to 184; 39, 48p and line EK

is 19; 29, 42p (of these parts).66 Clearly, since it is these lines, when summed, that
are the diameter of the horizon we previously assumed – just as the diameter of the
ecliptic is the diameters of the tropics – this diameter will be 204; 9, 30p (in the parts
in which the diameter of the equator is 120p). It follows from this that the radius
of the horizon circle is 102; 4, 45p, and the line between the center of this circle and
the equator is 82; 35, 3p (of these parts).67 qed.

61This arc is derived and approximated by 11; 40◦ in Alm. I 14. The value 11; 39, 59◦ is taken from

Alm. I 15 (see note 58).

62Computing with the chord table gives Crd(101; 39, 59◦) = 93; 2, 14p. 78; 20◦ is rounded from

78; 20, 1◦. Computing with the chord table from the value in the text gives Crd(78; 20◦) =

75; 47, 22p, but using the slightly more precise value gives Crd(78; 20, 1◦) = 75; 47, 23p.

63Again, the argument for this is found in Planis. 4.2 (see page 88).

64Calculation gives (93; 2, 14p/75; 47, 23p)60p = 73; 39, 15p and (75; 47, 23p/93; 2, 14p)60p =

48; 52, 37p respectively.

65The traditional value for the latitude of Rhodes is 36◦, which Ptolemy also uses in the Almagest

[Heiberg 1898–1903, p. 1, 89–90 ff.; Toomer 1984, 76 ff.]. In the ancient context, the justification

for using the complementary angle is probably best shown on the analemma (see page 111, note

170).

Where AB is the diameter of the horizon and CD the diameter of the

equator, the terrestrial latitude, 36◦, is the height of the north pole, Np,

above the horizon. Hence, the δ-circles tangent to the horizon, AF and

BE, are 54◦ from the equator.
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66Calculation gives (114; 7, 37p/37; 4, 55p)60p = 184; 39, 42p.

67See note 57.
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[8]

Since we have set that out, then let us show that, in a similar diagram, one also
sees that the magnitudes of the rising-times, and all that pertains to them, are just
as we showed with respect to the solid sphere.68

For let the equator be circle ABGD around center E and the circle through the [See Fig. 5]
signs circle ZBHD around center T . We produce two diameters passing through
point E, the center of the equator, representing the meridian. One of them, line
BED, passes through the intersections at points B and D, which are the equinoc-
tial points. The other, line ZTEH, passes through the center of the ecliptic, so
producing the solstitial points, Z and H.

First, let us proceed to show, on the upright sphere, what [parts] of the equator
rise with the parts of the circle through the signs. Now, because the position of the
horizon on the upright sphere is that of the meridian, and the straight lines in this
diagram that pass through the pole of the equator, point E, are the correlates to
the meridians, it is clear that both arcs ZB and HD, which are quadrants of the
ecliptic,69 rise with both arcs AB and GD, which are quadrants of the equator, and
they culminate with them, and set with them, because, in circle ZBHD, the radius,
line TH, bisects line BD at right angles at point E.70
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Figure 5: Planisphere 8.

So, we cut off equal arcs, arc BK and arc DL, from the circle through the signs,
and we cross line KMEN and line LSEO. Now since, we have shown that parallel

68The rising-times of arcs of the ecliptic are tabulated in Alm. II 8 [Heiberg 1898–1903, p. 1, 134–141;

Toomer 1984, 100–103].

69This sectioning of the ecliptic is discussed in Planis. 1.5.

70Elem. III 3.
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circles that are the same distance from the equator, on both sides, pass through
points K and L and points O and N , it results that point K is functionally opposite
point N and point L is opposite point O.71

First, if we assume that arc BK is the sign of Pisces, then clearly arc LD is
the sign of Libra, and in this way arc BO makes up the sign of Aries and arc
ND makes up the sign of Virgo. If, however, we join lines KT and LT , triangle
KET is equisided and equiangular with triangle LET .72 So, angle KET is equal to
angle LET , and their complementary angles, angle KEB and angle LED, are equal
respectively and to their vertical angles. So, since this angle is at the center of the
equator, then the arcs of the equator that rise with each of the signs we assumed are
also equal respectively.73 So, if we find the magnitude of one of these arcs – such as
if we found the magnitude of MB – then we have obtained with this what we want
of the rising-times.

Then, we produce a perpendicular from point T to line KE. Let it be line TF .[8.2]
So, since we have shown that, of the parts of which the radius of the equator is
60p, line TK, which is the radius of the circle through the signs, is 65; 36, 17p; and
line ET , the line between the center of this circle and the center of the equator, is
26; 31, 58p; and line EK, the radius of the circle parallel to the equator that is drawn
through the beginning of Pisces and the beginning of Scorpio, passing through points
K and L, is 73; 39, 7p (of these parts); then, triangle ETK is given.74

So, if we relate75 KT squared diminished by TE squared to line KE, there results
the excess of line KF over line FE.76 [If,] however, any two circles, be they of any
magnitude, intersect one another, and the greater circle bisects the lesser circle, then

71Planis. 1 & 2.

72The technical phrase “equisided and equiangular” ( AK
 @ð 	QË @ð ¨C 	�B@ ø
 ðA�Ó) probably translates a

phrase such as Êsogÿnion kaÈ Êsìpleuron found twice in the Almagest [Heiberg 1898–1903, 163 &

281]. Congruence follows from the fact that arc KZ equals arc ZL, so that ∠KTE = ∠ETL.

73This use of the singular “angle” (
�éK
ð@ 	QË @) to refer to any one of a set of angles is repeated three

times in the text (see pages 94, 95 and 98, below).

74The numbers stated in this sentence are derived in Planis. 4 & 6. The Arabic term ÐñÊªÓ,
“known,” probably translates the Greek dedomènoc, “given.” This statement can be related to Data

39 [Taisbak 2003, 119–120; Menge 1896, 66–68], however, we should note that Ptolemy’s use of

given is computational, whereas Euclid’s is geometric. See Berggren and Van Brummelen [2000],

for a discussion of the relationship between ÐñÊªÓ and dedomènoc.
75The Arabic verb

	 	�

@ (

	J
 	�, IV) can mean to join or bring into relationship. We have used the

more abstract translation to stress the peculiar nature of this operation. This is a rare case in a

Greek mathematical text in which a square value is put into relation with a linear value to produce

a linear result.

76(KT 2 − TE2)/KE = KF − FE. This claim can be justified from the theory of the application

of areas (Elem. II & VI 27–30).
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the square of the radius of the greater circle diminished by the [square of] the line
between their centers produces the square of the radius of the lesser circle.77 That is
to say, just as we did in these circles, if we join line BD, the line that joins the two
places of intersection passes through the center E in the lesser circle. So, since angle
DET is right, then line TD squared, which is the hypotenuse, is equal to the sum of
the squares of TE and ED.78 From this it follows that, whatever their magnitude,
the excess of the [square of] the radius of the circle that bisects the equator over the
[square of] the line between their centers is 3600p (of the parts in which the radius
of the equator is 60p).79

Because line EK was also calculated to be what we previously assumed, which is
73; 39, 7p (of these parts),80 if we relate to this the excess, which is 3600p, we obtain
the excess of line KF over FE, which is 48; 52, 42p (of these parts).81 So, when we
subtract that from 73; 39, 7p and take half of the remainder, which is 24; 46, 25p, line
EF is 12; 23, 12p (in the parts in which we assumed that line ET is 26; 31, 58p).82

So, of the parts of which line ET , the hypotenuse to right angle EFT , is 120p, line
EF is also approximately 25; 30p,83 and the arc that it subtends is 55; 40◦ (in the

By Elem. I 47, KT 2 − TE2 = (KF 2 + TF 2)− (TF 2 + FE2)

= KF 2 − FE2.

Since KN is cut by F and E into equal and unequal segments,

by Elem. II 5, KF 2 − FE2 = KE × EN .

But, EN = FN − FE

= KF − FE.

Hence, KF 2 − FE2 = (KE × (KF − FE)).

Therefore, KT 2 − TE2 = (KE × (KF − FE)).

E

T

K
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N

77This claim follows from the configuration of the circles such that Elem. I 47 obtains. Considering

Fig. 5, TB2 = EB2 + ET 2.

78The text literally reads, “equal to what is summed of the lines TE and ED each times (ú

	̄
) itself.”

The statement results from Elem. I 47.

79The simplification realized by pointing out that the first term of this equation is always 3600 is

utilized below in Planis. 8.3, 9, 12 & 13.

80Planis. 6.

81That is 3600/73; 39, 7p = 48; 52, 43p. Although the 3600 is, in fact, a square value, there is no

indication that Ptolemy thought of it as having different units than the lengths. Nevertheless, we

could be more exact and write 3600p×p/73; 39, 7p = 48; 52, 43p.

82Note, in Figure 5, that EF = (EK − (KF − FE))/2.

83There is an error here. Calculation gives EF = (120p/26; 31, 58p)12; 23, 12p = 56; 1, 17p. Her-

mann’s text has approximately 55; 59p (partes LV cum punctis fere LIX), which is better [Heiberg

1907, 239].
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degrees in which the circle around right triangle ETF is 360◦).84 So, angle ETF ,
which is equal to angle FEB (since angle TEB is also right) is 55; 40◦◦ (in the
degrees in which two right angles are 360◦◦); and this angle is 27; 50◦ (in the degrees
in which four right angles are 360◦). Since this angle is at the center of the equator,
arc BM will also be 27[; 50]◦ (in the degrees in which the equator is 360◦).

So, it is clear to us from this, that, just as we showed with respect to the solid
sphere, each of the signs at the equinoctial point – that is Pisces, Aries, Virgo and
Libra – rise, in the case of the upright sphere, with these 27; 50◦ of the equator.85

We could have shown this by a simpler argument in this way.86 Line KE by EN[8.3]
is equal to line BE by ED,87 and line BE by ED is 3600p. So, when we divide that
by line KE, line EN is given.88 Line KE, however, exceeds line EN by the equal of
twice line EF .89 So, line EF is also given.90 Line TE is given, and the right angle
at point F is given. Hence, angle ETF is given.91

[9]

Again in the same diagram,92 we assume arc BK of the ecliptic to be the arcs of[See Fig. 5]
two signs, such that point K is the beginning of Aquarius and point L the beginning
of Sagittarius; and diametrically opposite these points, point N is the beginning of
Leo and point O the beginning of Gemini. Clearly, if we show the quantity of the
magnitude of arc BM of the equator, then we have determined the time degrees in
which each of the signs we previously assumed rises on the upright sphere.

Clearly also, the magnitude of the lines KT and TE remains as it was, and
the magnitude of line KE increases. Because of the fact that we showed that the
radius of the circle parallel to the equator, which is drawn through the beginning of
Sagittarius and the beginning of Aquarius, is 86; 29, 42p (in the parts in which the

84Computing with the chord table gives Arc(56; 1, 17p) = 55; 39, 33◦.
85Alm. I 16.

86The following passage is the second metrical analysis in the text.

87Elem. III 35.

88This could be justified by Data 55, but Ptolemy is referring to the arithmetic operation of division,

as the Arabic makes clear [Taisbak 2003, 142; Menge 1896, 98–100].

89Note, in Figure 5, that F is the midpoint of KN .

90By computation, since KE and EN are given. Geometrically, however, one could also justify this

by an appeal to Data 4 & 2 [Taisbak 2003, 43 & 39; Menge 1896, 8–10 & 6].

91This could be justified by the theorem Taisbak calls Data 88*, but Ptolemy is referring to the use

of the chord table [Taisbak 2003, 226].

92The text uses the same expression that we generally translate as “in a similar diagram”

(
�èPñ�Ë@ è 	Yë É�JÓ ú


	̄
). In fact, the other occurrences of the phrase may also translate a Greek ex-

pression meaning the same diagram, since Greek mathematicians often refer to different but related

figures in this way [Netz 1999, 38–40].
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radius of the equator is 60p),93 if we divide the parts of the excess, 3600p, by line
KE – that is, if we divide them by 86; 29, 42p – we obtain the excess of line KF over
line FE, 41; 37, 15p (of these parts). When we subtract that from 86; 29, 42p and
take half of the remainder, which is 44; 52, 27p, we obtain line FE, approximately
22; 26, 13p (in the parts in which line TE is 26; 31, 58p).94 So, of the parts in which
line TE, the hypotenuse, is 120p, line FE is 101; 28p,95 and the arc that it subtends
is 115; 28◦ (in the degrees in which the circle around right triangle ETF is 360◦).96

So, angle ETF , which is equal to angle FEB, is 115; 28◦◦ (in the degrees in which
two right angles are 360◦◦); so, as for the degrees in which four right angles are 360◦,
it is 57; 44◦. Since this angle is at the center of the equator, arc BM will also be
57; 44◦.

So, if we subtract from this the rising-times of the signs that are at the equinoctial
points, which we showed are 27; 50◦,97 we obtain the remaining time degrees, 29; 54t,
in which each of these signs – that is Aquarius, Taurus, Leo and Scorpio – rise
on the upright sphere.98 Clearly, each of those99 four remaining signs – that is
Sagittarius, Capricorn, Gemini and Cancer – rises in the time degrees that remain
from a quadrant, 90t, which is 32; 16t. This is consistent with what we showed with
respect to the solid sphere.100

[10]

Following that, we consider whether on the inclined sphere these same rising-
times of the signs, which we previously mentioned, are also attainable according to
what is in this diagram.101

By way of example, we again use the circle parallel to the equator that we used
in the Almagest, namely the circle that passes through the island of Rhodes. In
this circle, the height of the north pole above the horizon is 36◦. As for the horizon
drawn by means of the circles parallel to the equator – whose distance is the distance
we previously showed – its radius is 102; 4, 45p (in the parts in which the radius of

93Planis. 5.

9444; 52, 27p/2 = 22; 26, 13, 30p. These computations follow the metrical analysis in Planis. 8.3.

95Calculation gives (22; 26, 13p/26; 31, 58p)120p = 101; 28, 33p.

96Arc(101; 28p) = 115; 27, 46◦.
97Planis. 8.2.

98There are 360 time degrees in a sidereal day. Hence, 1t = 4 min.

99Literally, “these” ( è 	Yë) again, but the intention must be to distinguish between these new signs

and those in the previous sentence.

100Alm. I 16 [Heiberg 1898–1903, p. 1, 84; Toomer 1984, 73].

101Here “this diagram” (
�èPñ�Ë@ è 	Yë) refers to the planisphere generally, not to one of the individual

diagrams in the treatise.
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the equator is 60p), and the line which is between the center of this horizon and the
equator is 82; 35, 3p (of these parts).102

Then we make the equator ABGD about center E, and the ecliptic ZBHD[See Fig. 6]
about center T . Since point E had been assumed to be the north pole, we imagine
the motion of the sphere as though it is from point D toward point G, then to
point B, then to point A. First, we draw two arcs of this one of the horizon circles
passing through the solstitial points, points Z and H. Let them be arcs ZKHL

and ZMHN .103 So, clearly, when the position of the horizon is that of arc ZKHL,
what is at point Z and at point K is rising and what is at point H and at point L

is setting. When its position is that of arc ZMHN the situation is opposite. That
is, what is at points N and H is rising and what is at points M and Z is setting,
since the motion of the sphere is indeed as though it is from point D toward point
G, and pole E had been assumed as always visible.

Since we have shown that not only does the circle through the signs bisect the[10.2]
equator but at the same time the horizon circle drawn in this way also bisects it,
it follows from this that the straight lines that cut off the places of intersection,
namely line KL and line MN , pass through center E.104 So, clearly, arc KA of the
equator is again equal to arc GL, and arc AM is equal to arc GN .

Arc MA, however, is also equal to arc KA.105 That is to say, if we put the two
centers of the horizon circle at these places, point S and point O, and we join lines
SE, OE and STO, then line STO is straight and at right angles to line ZH, line SE

is at right angles to line KL, and line OE is at right angles to line MN , [since] lines
on which perpendiculars from the center fall, are bisected by the perpendiculars.106

[So,] the sides of each of the triangles ETO and ETS will be equal to the sides of
the other, and they will be right, and angle TEO, of triangle ETO, is the equal
to angle TES of triangle ETS.107 Angle MEO, however, is equal to angle KES,
for both of them are right. Hence, the complementary angle MEA is equal to the
complementary angle KEA. Therefore, arc MA will be equal to arc KA. Hence,
the arcs that begin at points K, M , L and N and end at points A and G are equal,
and also arcs that begin where we said and end at points B and D are equal.

102These values are derived in Planis. 7.

103Ptolemy imagines the motion of the sphere by changing the position of the r-horizon (see page

122). Here we have two positions of a single horizon, as usual neglecting any consideration of the

southern hemisphere.

104Planis. 3.

105The logical connection of the statements that follow seems to have been lost in the text.

106The forgoing statements follow from the fact that lines ST , OT , SE and OE are perpendicular

bisectors joining centers to chords in circles ZKHL and ZMHN (Elem. III 3).

107The argument seems to proceed by an implicit appeal to symmetry, since the perpendicular

bisectors of equal circles fall on equal chords.
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Now since arc BH rises with arc BN and arc ZB with arc KB, and this arc [10.3]
is equal to arc BN , therefore arc DZ also rises with arc DK and arc HD with
arc DN , and this arc is equal to arc DK. So, it is also clear from this that arcs
of the circle through the signs that are the same distance from one and the same
equinoctial point rise in equal times.
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Figure 6: Planisphere 10.

Furthermore, since arc ZB is less than the rising-time of the upright sphere by [10.4]
arc KA, and arc HD, the diametrically opposite arc, exceeds the rising-time of the
upright sphere by arc GN ,108 and this arc is equal to arc KA, and point H is the
summer solstice, clearly in this diagram as well, the magnitude of the decreases of the
arcs of the ecliptic that are at the vernal point from the rising-times on the upright
sphere is the magnitude of the increase of the arcs equal to them and diametrically
opposite them above these same rising-times.109 Knowledge of this fact makes it
obvious that the shortest period of daylight is less than the equinoctial daylight by
arcs KA and NG, and the longest period of daylight is greater than the equinoctial
daylight by these two arcs.110

108Here mat.āli ↪ (©ËA¢Ó), translated as “rising-time,” clearly means the co-ascendant arc of the equa-

tor from which the rising-time is determined (see page 45).

109This passage introduces the arc of ascensional difference, which is the key to Ptolemy’s “easier

and more methodical” (eÎqrhstìteron kaÈ mejodikÿteron) technique for computing the rising-times

on the inclined sphere developed in Alm. II 7 [Heiberg 1898–1903, p. 1, 125; Toomer 1984, 94–95].

The ascensional difference of an arc of the ecliptic, which is a characteristic of geographic latitude,

is the difference between the time it takes that arc to rise at any given latitude and the time it takes

the same arc to rise at the equator. It will form the only basis for computing oblique rising-times

offered in this text. Ascensional difference is discussed by Neugebauer [1975, 36–37].

110The term translated here and in the following as “daylight” (PAî 	DË @) is simply the word for “the
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[11]

Now that we know this, let us next consider whether, at this assumed latitude,
the excess between the longest, or shortest, period of daylight and the equinoctial
daylight is found to be consistent with what occurs with respect to the solid sphere.

So, we assume a diagram similar to this diagram in which there is only the horizon[See Fig. 7]
that passes through points Z, K, H and L. Let our aim be to find the magnitude
of arc KA. So, we again make the center of the horizon circle in this configuration
point S. We join lines ST and SE, so they are perpendiculars to lines ZH and KL,
from what we previously proved. So, because we have shown that line ES, which
is the line between the center of the equator and the center of the horizon circle
of this assumed latitude, is 82; 35, 3p (in the parts in which it was assumed that
line ET , the line between the center of this circle and the center of the ecliptic, is
26; 31, 58p),111 hence, of the parts in which line ES, the hypotenuse, is 120p, line
ET is also approximately 38; 33p, and the arc on it is 37; 30◦ (in the degrees in which
the circle about right triangle EST is 360◦).112 Hence, angle TSE, which is equal
to angle AEK, is 37; 30◦◦ (in the degrees in which two right angles are 360◦◦) and
it is 18; 45◦ (in the degrees in which four right angles are 360◦). Since this angle is
at the center of the equator, arc AK will also be 18; 45◦.
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Figure 7: Planisphere 11.

Hence, both of the quadrants at the vernal point are 71; 15t, and both of the
quadrants at the autumnal point are 108; 45t.113 Therefore, the excess between the
longest, or shortest, period of daylight and the equinoctial daylight is 37; 30t, and

day.” This word, however, can mean either the period of a full day or the period of that in which

the sun is above the horizon.

111These values are derived in Planis. 7 & 4.3.

112Calculation gives (26; 31, 58p/82; 35, 3p)120p = 38; 33, 14p and Arc(38; 33p) = 37; 28, 37◦.
113By Planis. 10.4, 90◦ − 18; 45◦ = 71; 15◦ and 90◦ + 18; 45◦ = 108; 45◦.
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in equinoctial hours 21/2h, just as we showed with respect to the solid sphere.114

[12]

We will, however, also find the rising-times of the signs at this assumed latitude.
We set out, in this way, the equator and the circle through the signs around the [See Fig. 8]
diameters BD and ZH, and we cut off arc BT from the circle through the signs.

First, let it be the arc of one sign, obviously the sign of Pisces. We join line TEL,
and we describe the circle of the previously assumed horizon circle passing through
points T and L. Let it cut the equator at points M and N . We join line MEN and
we again produce two straight lines, SE and ST , from point S, the center of the
horizon circle, and we produce from it a perpendicular to line TL, which is line SO.
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Figure 8: Planisphere 12.

We have shown, just above, that arc KM is that by which the sign of Pisces and
the sign of Aries fall short, on either side, of their rising-times on the upright sphere,
and by which the sign of Virgo and the sign of Libra exceed their rising-times on
the upright sphere.115

We have shown that line ET , the radius of the circle parallel to the equator
drawn at the beginning of Pisces, is 73; 39, 7p (in the parts in which line ES, the
line between the center of the equator and the center of the horizon circle, is assumed
to be 82; 35, 3p), and that the excess of line TS squared over the line ES squared
is 3600p (of these parts).116 If, in the same way as we did above, we divide that

11437; 30◦ × 0; 04
h/◦ = 2; 30h. The conversions between various characteristics of latitude are dis-

cussed in Alm. II 2–5. These specific values are derived from the latitude of Rhodes in Alm. II 3

[Heiberg 1898–1903, p. 1, 93–95; Toomer 1984, 781].

115That is, KM is the ascensional difference discussed in Planis. 10.4.

116Planis. 6, 7 & 8.2, respectively.
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by 73; 39, 7p and we do what follows that, just as we did for the upright sphere, we
obtain line EO as 12; 23, 12p (in the parts in which line ES is 82; 35, 3p).117 So, of
the parts in which line ES, the hypotenuse, is 120p, EO is approximately 18; 1p,
and the arc on it is 17; 16◦ (in the degrees in which the circle around triangle ESO

is 360◦).118 So, angle ESO, which is equal to angle KEM , is also 17, 16◦◦ (in the
degrees in which two right angles are 360◦◦), and it is 8; 38◦ (in the degrees in which
four right angles are 360◦). So, arc KM is also 8; 38◦ (in the degrees in which the
equator is 360◦).

The rising-times of each of the four assumed signs was 27; 50t on the upright
sphere.119 So, when we subtract from them these 8; 38t, we obtain the rising-time
of each of the signs Pisces and Aries as 19; 12t. Then, when we add those same to
this, we obtain the rising-time of each of the signs Virgo and Libra, 36; 28t.

[13]

Then, again in a similar diagram we assume arc BT to be the arc of two signs,[See Fig. 8]
that is Pisces and Aquarius, so that the rest of what we mentioned remains in the
same situation.

So, ET , the radius of the circle parallel to the equator drawn at the beginning
of Aquarius, is 86; 29, 42p (of these parts).120 If that is divided according to 3600p,
just as we mentioned above, we obtain line EO as 22; 26, 13p (in the parts in which
line ES is 82; 35, 3p).121 Of the parts in which line ES, the hypotenuse, is 120p,
line EO is also approximately 32; 36p, and the arc on it is 31; 32◦ (in the degrees
in which the circle drawn around right triangle ESO is 360◦). Hence, angle ESO,
which is equal to angle KEM , is 31; 32◦◦ (in the degrees in which two right angles
are 360◦◦), and it is 15; 46◦ (in the degrees in which four right angles are 360◦).
Hence, arc KM , the combined difference between the rising-times of the assumed
signs and the rising-times on the upright sphere, is 15; 46◦ (in the degrees in which

117The method of computation is given in Planis. 8.2, EO = (ET − 3600/ET )/2. That is,

(73; 39, 7p − 3600/73; 39, 7p)/2 = 12; 23, 12p.

118Calculation gives (12; 23, 12p/82; 35, 3p)120p = 17; 59, 55p.

119Planis. 8.2.

120Planis. 5.

121The Arabic reads “If that is divided by” using the standard preposition for arithmetic division

(úÎ«). Since, however the operation intended is not what we mean when we say “divided by,” we

have translated with “divided according to” in order to distinguish this algorithm from standard

division. The computation follows Planis. 8.2: EO = (ET − 3600/ET )/2, so that (86; 29, 42p −
3600/86; 29, 42p)/2 = 22; 26, 13p.
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the equator is 360◦).122

Their rising-times on the upright sphere were 57; 44t,123 so if we subtract these
15; 46◦ from 57; 44◦, we obtain the rising-time of Pisces and the rising-time of Aquar-
ius together as 41; 58t. As for the rising-time of Aquarius alone, it is 22; 46t, because
Pisces rises in 19; 12t.124 If we add the 15; 46◦ to 57; 44◦, we obtain the rising-time
of Leo and the rising-time of Virgo. Their rising-times, when summed, are 73; 30t.
So, as for the rising-time of Leo alone, it is 37; 2t, again from the fact that Virgo
rises in 36; 28t.125 Clearly, Taurus also rises in times equal to the times of the rising
of Aquarius, 22; 46t, and Scorpio rises in times equal to the times of the rising of
Leo, 37; 2t, the rising of both Capricorn and Gemini is in the remaining times in
this quadrant, which is 29; 17t, and the rising of both Cancer and Sagittarius is in
the remaining times from that quadrant,126 which is 35; 15t, as befits our original
aim.127

[14]

So, we have also shown in this diagram, which is with respect to a flat surface,
that the matter of the rising-times of the signs of the circle through the signs, and
everything which follows that, is consistent with what we showed with respect to
the solid sphere.128

[Now,] however, we make the diagram of a size appropriate to the given situa- [14.2]
tion,129 in which we want to draw what we mentioned, and such that it is prepared
for us to draw the configuration of the fixed stars on it, if we want that.

If we want to set out on it the thing that, particularly in horary instruments,
is called the spider, then we set out the circle that is outside of all the circles,

122That is, KM is the sum of the ascensional differences of the two signs. The word translated

as “the combined” (¼Q�� ��ÖÏ @) usually simply means “common.” Here, however, it clearly means the

sum.

123Planis. 9.

124Planis. 12.

125Planis. 12.

126Literally, “this quadrant” as well, but the intention must be to distinguish between them.

127The rising times of the quadrants are calculated in Planis. 11. Hence, 75; 15t−(19; 12t+22; 46t) =

29; 17t and 108; 45t − (36; 28t + 37, 2t) = 35; 15t.

128Planis. 8–13.

129The expression for the size of the diagram is literally “commensurate with the size”

(P@Y�®Ó I. �k úÎ«), which probably translates something like sÔmmetron tÄ megèjei, used with vari-

ants three times in the Almagest [Heiberg 1898–1903, p. 1, 64, 351 & 403]. In a similar vein, in

the Latin translation of the Optics, the reader is instructed to set up a bronze disk “of moderate

size” (moderate quantitatis) [Lejeune 1989, 91]. The word translated as “situation” (© 	�ñÓ) can also

simply mean “place.” In this context, however, it probably carries the more abstract meaning.



102 Sidoli and Berggren SCIAMVS 8

and the greatest of them, circle ABGD around center E. We draw two diameters[See Fig. 9]
intersecting at right angles representing meridians. Let them be lines AG and BD.
We cut off arc DZ, beginning from point D. Let its magnitude be the magnitude
of the distance of the assumed circle parallel to the equator from the south pole on
the solid sphere. We produce a line parallel to line ED from point G. Let it be line
GH. We join line DZH and we produce a perpendicular to line DE from point H,
which is line HT .

Then, I say that if we do as we did in the preceding, so that, beginning from point
G, we cut off an arc that is the distance of each of the remaining circles parallel to
the equator on the corresponding side [of G], and we join straight lines from point D

and between the endpoints of the arcs that we cut off, as line DKG – for example,
if our aim is to draw the equator, and we make line EL equal to line TK, and point
E a center and describe circle LMS with a distance equal to distance EL, then the
position of this circle is that of the equator.

Each of the remaining circles is [drawn] in this way. That is, if we do the opposite
of that, as we showed in the preceding, so that we assume the equator is circle LMS

and we draw in its plane a circle parallel to it, whose distance from it to the south
is in the size of an arc similar to arc GZ, then the circle that we will draw is circle
ABGD. So, we join line MG and let it intersect circle LM , the equator, at point
N , so that the circle ABGD is drawn around center E with distance EG, just as
we did above.
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Figure 9: Planisphere 14.

I say that arc MN is similar to arc DZ. The proof of this is that the ratio of line
DE to line EG is as line DT to line TK,130 and line DE is equal to line EG, so line
DT is also equal to line TK. Line TK, however, is equal to line EM , so line DT

130Elem. VI 3.
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is also equal to line EM . Line TH is also equal and parallel to line EG, hence line
DZ is parallel to line MN .131 So, angle EMN is equal to angle EDZ, hence arc
SLN is similar to arc BGZ, so the remaining arc MN is similar to the remaining
arc DZ.

[15]

We should also achieve our aim by showing how we draw the circles whose sit-
uation relative to the circle through the signs is as that of the circles previously
mentioned relative to the equator, so that we can set out the stars whose positions
are observed and determined in their measure according to this sphere without, first,
using their sides in their measure according to the equator.132

So, first, let the equator, one of the circles set out on the plate, be circle ABGD [15.2]
[See Fig. 10]around center E, and the ecliptic circle ZBD, and the straight line that goes through

both two poles line ZAEHG, and the line passing through the place of intersection
with the equator line BED. If we cut off arc BT and we make it equal to the arc
between the poles of the equator and the circle through the signs, and we join line
DKT , then point K is functionally a correlate of the pole of the circle through the
signs.133 Clearly, this is in accordance with what we explained.

A

E

T

D

H

K

Z

B

G

Figure 10: Planisphere 15.

The circles passing through this point and diametrically opposite points on the [15.3]
circle through the signs are bisectors of the equator as well. These drawn circles
are those that stand in for the great circles perpendicular to the ecliptic, because

131Since 4DTH is congruent with 4EMG.

132The term “sides” (¨C 	�@) indicates that the coordinates of a star were regarded as the sides of a

spherical quadrilateral.

133Again, it seems strange to claim that point K is the “correlate ... functionally” (
�èñ�®ËAK. . . . �èQ�
 	¢ 	�),

since it is indeed the correlate (see page 84).
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we have shown, in general, that all circles that diametrically intersects one of these
assumed circles, diametrically intersects the other, remaining circle as well.134

[16]

We can also set out, on the plate, the circles parallel to the ecliptic in this way.
[So,] we make the meridian that passes through the two poles circle ABGD[See Fig. 11]

around center E. Let the axis be BED, and we imagine point D as the hidden pole,
the diameter of the equator as AEG, and the diameter of one of the circles parallel
to the ecliptic as line ZHT . Let our aim be to set out, on the plate, the circle that
has this line as its diameter. So, we pass a line through point H parallel to line
AEG. Let it be line LHK. We join lines DMZ, DNT and DSL.

Clearly, the circle whose diameter is line ZT is drawn around diameter MN .
That is to say, it touches the two circles parallel to the equator, whose distance from
it are in [the size of] the arcs AZ and GT . Therefore, these circles are drawn with
distances EM and EN .135

When, however, the circle parallel to the ecliptic, whose diameter is line ZT ,
bisects the circle parallel to the equator, whose diameter is LK, at the meridian,
whose diameter is line BD,136 and this circle, also, is drawn with distance ES, as
circle SOF ,137 then, we must show that the circle drawn around diameter MN

passes through points O and F .
We join lines BZ and BQ, and produce lines KL and DT until they meet at point

R. So, because angles BZQ and BHQ are right,138 points B, H, Q and Z are on
the circumference of a single circle.139 So, angle BQR is equal to angle BZT , which
is equal to angle BDR,140 so points B, R, D and Q are also on the circumference of
a single circle,141 and that which is the product of line QH by line HR is equal to
that which is the product of line BH by line HD.142 Since it is like that, it is equal
to line HL squared.143 So, line ME by line EN is also equal to line ES squared,144

which is equal to line FE by line EO, hence points M , O, N and F are again on

134Planis. 3.

135Planis. 1.

136This meridian is, in fact, the equinoctial colure.

137Planis. 1.

138∠BHQ is right by construction, while ∠BZQ is the angle in a semicircle (Elem. III 31).

139Converse of Elem. III 31.

140Elem. III 21.

141Converse of Elem. III 21.

142Elem. III 35.

143Since 4s BHL, HLD and BLD are similar.

144Since 4MED is similar to 4QHD and 4MND is similar to 4QRD.
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the circumference of a single circle.145
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Figure 11: Planisphere 16.

[17]

We should also show that the centers of the circles parallel to the ecliptic that
are drawn in this way are always different.

Let the meridian passing through both poles be circle ABGD around center E, [See Fig. 12]
and the axis line BED, and the diameter of the equator line AG, and the diameters
of two circles parallel to the ecliptic lines ZH and TK. We join lines DLZ, DMH,
DNT and DSK, and we draw circle OSF around triangle DNS.146 We join line
OF and bisect line LM at point Q.147 So, clearly, the circle parallel to the ecliptic,
which is on its diameter ZH, is drawn on diameter LM and the circle parallel to
the ecliptic, whose diameter is TK, is drawn around diameter NS.148

I say that the center of these circles is not one and the same. That is, point Q

does not also bisect line NS. The proof of this is that arc ZT is equal to arc KH,
therefore angle ZDT is equal to angle HDK and arc NO is equal to arc SF .149 So,
lines LM and OF are parallel. Then, the ratio of line DL to LO is as the ratio of
line DM to MF ,150 but the ratio of line DL to LO is as the ratio of line DL squared

145Converse of Elem. III 35.

146Elem. IV 5.

147Elem. I 10.

148Planis. 16.

149Elem. III 26 & 27.

150Elem. VI 2.
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to line DL by line LO, and the ratio of line DM to MF is as the ratio of line DM

squared to line DM by line MF .151 Hence, the ratio of line DL squared to line DL

by line LO is as the ratio of line DM squared to line DM by line MF . Because of
the circle, line DL by line LO is equal to line SL by line LN , and line DM by line
MF is equal to line NM by line MS.152 So, the ratio of line DL squared to line
SL by LN is as the ratio of line DM squared to line NM by line MS, and if we
alternate, the ratio of line DL squared to line DM squared is as the ratio of line SL

by line LN to line NM by line MS.153 Line DM squared, however, is greater than
line DL squared, since line DM is longer than line DL,154 so line NM by line MS

is greater than line SL by line LN . Line NS is common with line LN and with line
MS, hence, line MS is longer than line LN .155 Line LQ, however, is equal to line
MQ, hence, line NQ is longer than line QS. So, point Q is not the center of the
circle whose diameter is line NS.
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Figure 12: Planisphere 17.

[18]

Next, for the situation of circles parallel to the ecliptic not confined to the plate,

151Elem. VI 1.

152Elem. III 36.

153Elem. V 16.

154Since arc DH < arc DZ, line DM meets diameter AG farther from diameter DB, than line DL.

Hence, DM > DL.

155The argument appears to run as follows. Since MS ×NM > SL × LN , we have MS × (NS +

MS) > LN × (NS + LN). NS being common, MS > LN . Maslama gives a geometric argument

for this claim involving auxiliary lines [Kunitzsch and Lorch 1994, 22].
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part of which falls, rather, in the section of the sphere that is not visible and which
is not drawn – that is, circles that intersect the always hidden circle – we must again [See Fig. 13]
set out the circle through the two poles as circle ABGD around center E.156 Let the
axis be line BD. We imagine point D as the hidden pole, line AG as the diameter
of the equator, the diameter of the always hidden circle parallel to it as line ZH,
and the diameter of the circle parallel to the ecliptic that intersects this as TKL.
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Figure 13: Planisphere 18.

We draw a semicircle on line ZH. Let it be ZMH. We produce a line parallel to
ED. Let it be line KM . So, because of the fact that we extend line AGN and the
two lines DHN and DLS, the circle drawn with distance EN , such as circle ON [F ],
is the always hidden circle on the plate,157 and the circle that is drawn representing
the circle on line TKL again passes through point S, and it cuts the always hidden
circle in arcs similar to arc HM , since line KM is the section common to their
planes. Because, if we draw a circle about center E equal to circle ZMH – as if we
draw circle QRX – and we produce line MRKQ,158 and we produce lines EQO and
ERF , then we make arcs NO and NF similar to arcs XQ and XR. So, they are

156As the first part of this sentence makes clear, this always hidden circle ( @ �YK. @ �éJ
 	®	mÌ'@ �èQK @YË@) is the

southernmost bounding circle of a given plate. In some cases, this may be the same as the bounding

circle of the region of the celestial sphere that never rises for any horizon not on the equator.

157Planis. 14.

158The text had MKRQ, following the order of the points in the manuscript diagram. We have

changed the order of the letters to reflect the change in the order of the points in the diagram.
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similar to arc HM , and the circle parallel to the ecliptic drawn on line TL passes,
on the plate, through points O, S and F .159

[19]

Clearly, in a similar diagram, even if we imagine the circle parallel to the ecliptic[See Fig. 14]
drawn through point D – such as if we construct the circle drawn on line DK – and
we extend line DK to the mentioned breadth and pass line MLS through point L

perpendicular to line AGN , then this is the line on the plate representing the circle
whose diameter is line DTK. For all straight lines produced from point D passing
through this circle are in a single plane, the plane of the circle, and the section
common to this plane and to the plane of the equator is line MLS,160 for the plane
of the meridian through line AG is also at right angles to both of these planes we
mentioned.161
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Figure 14: Planisphere 19.

[20]

So, in this way that we showed, an analog to what is on the solid sphere must
be drawn on the plate – the circles found by way of the equator (those that are
meridians, and those that are parallel to the equator), and the circles found by
means of the circle through the signs.

Because, the pole of the equator is, again, a center for this circle and for all circles
parallel to it, so [1] all meridians are, indeed, straight lines.162 [2] The pole of the

159Elem. IV 5 demonstrates the construction of a circle through three given points.

160Elem. XI 3.

161Elem. XI 19.

162Planis. 1.
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circle through the signs is not a center for this circle nor for even one of the other
circles that are correlates to the circles parallel to it.163 [3] One of these circles is
without a center; that is, it is a straight line.164 [4] Great circles that are drawn
and pass through this pole are different from that, for the circle representing the
circle through the two poles is a straight line, on which fall the centers of the circles
parallel to the ecliptic, and the remaining circles are circles, but they are unequal.165

It follows from this that we can draw the stars in the locations166 found in the [20.2]
measure with respect to the equator, without drawing all circles, with only a division
of the equator and a ruler divided according to the ratios of the circles parallel to
the equator. As for the locations found in the measure with respect to the circle
through the signs, this is not possible.167 We must, rather, draw every circle, or
most of them, in order to be guided by them regarding the positions in which the
stars must be set out.

It would be best insofar as it is complete with respect to both of these drawings
used on the solid sphere that we set out the circles [found] by means of the equator
(those that are meridians, and those that are parallel to the equator), and the circles
found by means of the circle through the signs, just as on the inscribed spheres.168

So, if it is not possible to draw all of that on the plate, we should draw on it the
circles that pass through 2◦, 3◦, or 6◦ (since this is an intermediary drawing) because
these three numbers are factors169 of 30◦ (the degrees of each of the signs) and 24◦

163Planis. 1, 15 & 17.

164Planis. 19.

165These circles are introduced in the last paragraph in Planis. 15, although neither of the specific

features mentioned here are discussed.

166The plural of wad. ↪ (¨A 	�ð@), translated as “locations” here and in next sentence, can also mean

“conventions” and may carry the sense of coordinates, S(δ, α) or S(λ, β). Hipparchus, apparently,

recorded the fixed stars in equatorial coordinates [Duke 2002].

167Ptolemy records the stars in ecliptic coordinates in his star catalog (see Alm. VII 5–VIII 1).

168The word translated as “inscribed” (H. ðQå	�Ó) literally means “struck” and probably refers to the

method of producing the inscribed image. A similar usage of this root is found in a description

of two astrolabes by a certain Ibrāh̄ım ibn Mamdūd al-Jallād al-Mawasil̄ı, who admired the way

the two instruments were “cast and inscribed” (H. Qå 	�ð ½J.�) [King 2005, vol. 2, 643-644]. Ptolemy

is presumably referring to a well-known type of ancient star globe that included coordinate circles

as guides, some set of the fixed stars and perhaps images of the constellations. Geminus, in his

Introduction to the Phenomena (V 62–65), makes some offhand references to such inscribed spheres

[Aujac 1975, 31–32; Evans and Berggren 2006, 159]. In particular, he notes that the horizon and

the local meridian are not generally included among the inscribed lines. The construction of a more

sophisticated star globe is described in Alm. VIII 3 [Heiberg 1898–1903, p. 2, 179–186; Toomer

1984, 404–407].

169Literally, “common numbers” (¼Q�� ��Ó XY«).
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(the approximate distance between the equator and each of the tropics) so that it
happens that the two tropics and the meridians through [the beginnings of] the signs
are among the circles that are drawn, and there is no difference with respect to radii
that are not found in this way.

The end of the treatise of Ptolemy of the people
of Claudia On Flattening the Surface of the Sphere.

Praise to God, and his blessings on his prophet Mohammad,
his family and companions, and may he grant peace.
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VI Commentary

In the notes accompanying our translation, we have addressed specific textual issues
and provided references for following the details of Ptolemy’s arguments in the con-
text of ancient mathematics. While these should be sufficient for understanding the
steps of the proofs, a reader will, nevertheless, often be left with questions about
Ptolemy’s overall approach. Most of these questions arise because Ptolemy assumes
a fairly advanced level of background knowledge on the part of his reader. By read-
ing the entire treatise with an eye to what is demonstrated and what is assumed,
we can, at once, develop a better understanding of Ptolemy’s methods and a better
sense of the readership Ptolemy saw himself as addressing.

Ptolemy’s reader is assumed to have a good grasp of the principles of ancient
spherical astronomy and specifically to have already mastered books I and II of the
Almagest. There are many references to the spherical astronomy of the Almagest
and the reader is expected to know the subjects covered, the methods developed and
the specific results obtained. Ptolemy often contrasts the solid geometric methods
of the Almagest with the planar approach of this treatise.

Most significantly, however, the reader is also assumed to already have some
familiarity with the ancient geometric methods used for producing a plane diagram
of the sphere that is mathematically equivalent to that produced by stereographic
projection. Ptolemy, however, often proceeds in a way that is unexpected from the
perspective of projective geometry [Berggren 1991, 138–142]. Hence, in reading this
text, it is often more useful to situate his methods in the context of ancient solid
geometry than in that of projective geometry as it was developed by medieval and
early modern mathematicians. Hence in our commentary, we generally describe
these aspects of Ptolemy’s procedures in terms of conic theory, solid geometry and
the methods of the ancient analemma.170

As Planis. 15–19 make explicit, the reader is assumed from the beginning to
know that the geometric objects under discussion are constructed in various ways
on a cutting plane by joining straight lines between key points on the sphere and
the south pole. This construction produces a plane diagram that is mathematically
equivalent to that produced by stereographic projection with the south pole as the
point of projection. In medieval and, especially, early modern texts, discussions of
stereographic projection are developed on the basis of two fundamental theorems,
at least one of which is demonstrated at the outset.

The first of these, which we call the circle preservation theorem, states that
the projection of any circle not passing through the point of projection is also a

170For overviews of the ancient and medieval analemma see Evans [1998, 132–141], Berggren [1980]

and Neugebauer [1975, 839–856]. See, also, Sidoli [2005] for a discussion of the use of the analemma

as a method for solving computational problems in spherical astronomy.
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circle, while the projection of a circle passing through the point of projection is a
straight line [Neugebauer 1975, 858–859]. The second of these, which we call the
conformality theorem, states that the angle of intersection between any two circles,
defined as the angle of the tangents at the intersection, is preserved in the projection
[Neugebauer 1975, 859–860]. The earliest explicit proof of circle preservation that
has survived is that of Ah.mad ibn Muh.ammad ibn Kath̄ır al-Farghān̄ı [Thomson
1978, 212–215, trans. of the Russian by N. D. Sergeyeva and L. M. Karpova], while
the first published proof of conformality is due to Edmond Halley [1695, 204–205].171

Any reading of the present text must confront the ways in which Ptolemy han-
dles these two fundamental theorems. Our reading is based on the hypothesis that
Ptolemy knew a simple proof of circle preservation and assumed his readers would
be familiar with this, but that he did not know any general proof of conformality
and, hence, demonstrated individual cases of properties of the planisphere that are
mathematically related to conformality.

As will be shown below, the proof of circle preservation is straightforward and
very likely within the scope and level of background knowledge Ptolemy assumed on
the part of his reader. A proof of conformality, however, is not quite so simple and,
as Halley [1695, 204] says, “this not being vulgarly known, must not be assumed
without a Demonstration.” Moreover, if Ptolemy had known a general proof of
conformality, many of the theorems he does give could have been stated as trivial
corollaries.

Generally, what Ptolemy shows is that the angular distance between points on
the equator, or on a δ-circle, is preserved in the planisphere, which we will call
orthogonal angle preservation. This could be shown from conformality by an indirect
argument, however, Ptolemy will prove it for individual cases (Planis. 1, 8–13 & 16),
presumably because, like Halley, he considered these things not generally known and
hence worthy of proof. One other case of conformality is demonstrated in Planis.
3, in which Ptolemy shows that the intersections of circles that represent two great
circles oblique to the equator correspond to diametrically opposite points. It is worth
noting that the topics that the Planisphere addresses can all be successfully handled
using the individual cases that Ptolemy demonstrates.172

Throughout the treatise Ptolemy often frames a proposition in terms of specific

171An earlier proof of a property equivalent to conformality is preserved in the unpublished notes of

Thomas Harriot [Pepper 1968, 411–412]. We will address the claim by Commandino [1558, f. 25v;

Sinisgalli 1993, 146–147] that Planis. 16 is a proof of circle preservation in our commentary, as well

as the claim by more recent readers, such as Heath [1921, 292] and Lorch [1995], that a number of

the proofs concern circle preservation.

172Although Neugebauer [1975, 858] claims that only circle preservation was “recognized” by Greek

mathematicians, the whole first part of the treatise is an argument for the conformality of the circles

relevant to rising-time phenomena.
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objects, such as the equator and the ecliptic, and then later asserts a more general
theorem, such as concerning any oblique great circles. In general, in order to under-
stand Ptolemy’s methods, it is necessary to pay as much attention to how he carries
out his proofs as to what he has to say about them. Ptolemy will often assume that
the reader can supply an argument for generality by realizing that the methods of
a proof can be successfully applied to similar configurations.173 In our commentary,
we will point out how proofs that Ptolemy asserts about specific objects contain
more general claims and where his arguments are actually sketches of more broadly
applicable methods.

The diagrams in the commentary are meant to be viewed in conjunction with
those accompanying the text. Where the same object appears in both diagrams,
it is given the same letter name, and where the objects are not the same but are
closely related they are differentiated by primes (for example, A and A′). Lines that
are found in the original diagram are drawn in the same weight in the diagrams in
the commentary, although not all original lines are included. Auxiliary lines, which
are added to the diagrams in the commentary, are drawn in half weight. Where
both the planisphere and the solid sphere appear in the same diagram, objects in
the planisphere are highlighted by being drawn in grey.

Planisphere 1

The first section introduces the reader to the construction of objects in the plane
that will stand in for objects on the sphere. As Ptolemy states, the fundamental
objects are the equator, the r-δ-circles and the r-meridians.

The key to understanding the treatise is the realization that Ptolemy is thinking
of the planisphere as formed on a cutting plane intersecting the solid sphere. In
order to distinguish Ptolemy’s approach from that of pointwise projection, we will
call the plane of the diagram the cutting plane. The underlying solid geometry is
only implicit in Planis. 1–7, but it becomes explicit in the second part of the treatise
and the style of argument that we develop here can be found in Planis. 15, 16, 18
& 19.

Following a common practice in Greek solid geometry, most of the diagrams in
the treatise represent two, or more, different planes folded into the plane of the
diagram.174 In Planis. 1, the first of these is the plane of the equator, the second
that of the solstitial colure.175 Hence, in Figure 1, Ptolemy’s point D represents
both the autumnal equinox and the south pole (D and D′ in Figure 15).

173See Netz [1999, 240–270], for a more general discussion of the problem of producing generality

in Greek mathematics.

174The exceptions are the diagrams to Planis. 3, 8, 10–12, which all represent a single plane.

175Lorch [1995, 271–273] discusses this section with two separate figures to make explicit which

objects are in which plane.
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In the solid configuration, the plane of the equator is the cutting plane and the
south pole is the point of projection. In Planis. 1.2, Ptolemy simply assumes that
the δ-circles are represented by circles and the meridians by straight lines. Figure
15 shows why Ptolemy is justified in making these assumptions.
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Figure 15: Perspective diagram of Planis. 1.

The cutting plane is that of the equator, ABGD, and two equal δ-circles are
imagined through points Z and H. On the one hand, the δ-circles are joined to the
south pole, D′, by right cones whose axis, ED′, is perpendicular to the cutting plane.
Hence, as Ptolemy states, the δ-circles to the north of the equator are represented
by circles inside the equator and those to south by circles outside of it. The points of
the meridians, on the other hand, are joined to the south pole by lines all of which lie
in planes that are perpendicular to the cutting plane and which pass through both
the center of the equator and the north pole. Hence, the meridians are represented
by straight lines through the center, E, which obviously represents the north pole.

As becomes clear in Planis. 1.3, however, Ptolemy also assumes, without proof,
that every circle in the sphere is represented by a circle in the cutting plane. This
means that there was probably a simple proof of this fact that Ptolemy could assume
his readers knew.

Such a proof would be straightforward within the context of Greek geometry.
Since all circles on the sphere are joined to the point of projection by cones, we can
provide a simple proof based in conic theory.176

In Conics I 4 & 5, Apollonius establishes the conditions under which a cutting
plane will intersect a cone in a circle. This occurs when the cutting plane is per-
pendicular to the axial triangle and cuts the latter in a similar triangle. The new
triangle formed by the cutting plane can be similar either because (1) the base of

176There are medieval proofs based in similar considerations from conic theory by al-Farghān̄ı and

Jordanus of Nemore [Thomson 1978, 86–98 & 212–215]. See also Heath [1921, v. 1, 292–293] and

Neugebauer [1975, 858–859].
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the new triangle is parallel to the base of the axial triangle or (2) it is arranged
in the position Apollonius calls subcontrary (ÍpenantÐa) [Heiberg 1891, vol. 1, 18].
This serves as the basis for the following proof.

If, in Figure 16, point P is the point of projection, the object that represents an
arbitrary circle AB is also a circle. Let the two circles parallel to the cutting plane
and tangent to circle AB be drawn such that A and B are the points of tangency.
Let C be the intersection of the great circle through A, B and P with the tangent
circle through B. Join lines AP , BP and BC.

B
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C
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D

Figure 16: Circles on the sphere are represented by circles in
the planisphere.

Then 4BPA is an axial triangle of the cone with base AB and is perpendicular
to the cutting plane. It remains to show that the plane of the circle about BC

cuts this cone in a circle, because the cutting plane, being parallel, will cut the

cone in the same kind of conic section as this plane (Conics I 4). Since
_

BP =
_

PC,
∠BAP = ∠CBP . So, since ∠BPA is common, 4BDP is similar and subcontrary
to 4ABP . Therefore, the cone about 4ABP is cut by the plane of the circle about
BC in a circle about diameter BD (Conics I 5). Therefore, all circles on the sphere
are represented in the plane by circles.

Ptolemy uses the fact that circles are represented by circles to construct the r-
ecliptic as a circle tangent to the circles representing two equal δ-circles. In Planis.
1.3, he shows that the r-ecliptic bisects the equator. Although he states this theorem
as concerning the r-ecliptic, the proof itself does not depend in any way on the
obliquity of the ecliptic, so that it is valid for the circle representing any great circle
oblique to the equator. In fact, in Planis. 3, Ptolemy will apply this more general
claim to the case of horizon circles. The argument that the correlates of oblique great
circles bisect the equator is the first proof of a case of orthogonal angle preservation.

In Planis. 1.4, Ptolemy describes how this method may be used to lay out the
r-ecliptic and the r-tropics, and orients the reader to the cardinal points of the
r-ecliptic and the direction of the motion of the cosmos.

The final paragraph, Planis. 1.5, explains that the division of the r-ecliptic into
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quadrants and signs is not effected by constructing equal arcs, but by constructing
the appropriate r-δ-circles.
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Figure 17: The division of the ecliptic by δ-circles.

This is obvious in the case of the cardinal points of the r-ecliptic, but it may be
useful to see an example construction of a zodiacal sign. In Figure 17, throughout the
year the sun moves counterclockwise around circle BTDM , starting from the vernal
equinox at B. In order to construct point S as the beginning of Pisces, λ = 330◦,
we cut off

_
GQ equal to the declination of S, δ = 11; 39, 59◦ S (given in Alm. I 14 &

15), and extend DQ to point P . If we complete a circle around E through P it will
meet the r-ecliptic at S, the beginning of Pisces. In Planis. 4, Ptolemy will show
how this construction can be used to compute the radius of the r-δ-circle in terms
of the radius of the equator.

Finally, Ptolemy states, without proof, that his construction will ensure that the
r-meridians will pass through degrees of the ecliptic that correspond to diametrically
opposite points. The proof of this assertion is given in Planis. 2. Hence, from the
perspective of purely descriptive geometry, it would be simpler to find S by laying

off the right ascension,
_

BR, given in Alm. I 16. This would, however, give us no
way of computing the position of S in terms of the radius of the r-δ-circle. That is,

although we could compute the right ascension,
_

BR, we would not know the length
ES.

Planisphere 2 & 3

The next two sections concern the relationship between the equator and r-horizons,
which are drawn in the same way as the ecliptic. The enunciation for both sections
is asserted in the beginning of Planis. 2, which provides a lemma, and then repeated
at the beginning of Planis. 3.
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The lemma in Planis. 2 shows that an r-meridian will intersect the r-ecliptic at
points that correspond to diametrically opposite points.177 What this means, and
what Ptolemy will show, is that these points represent the opposite intersections of
a meridian with a pair of equal δ-circles.

To carry out the proof, Ptolemy again tacitly folds two different planes together
to form the plane of the figure. As always, the cutting plane is the plane of the
equator, but now the other plane is that of an arbitrary meridian. This is the only
place in the treatise where Ptolemy folds an arbitrary meridian into the plane of the
figure so that the south pole does not overlap with one of the equinoxes.

Once again Ptolemy’s approach is best explained with reference to the solid con-
figuration, as seen in Figure 18. He begins by drawing the equator, ABGD, and
the r-ecliptic, ZBHD. He then passes an arbitrary line, an r-meridian, through
E so that it intersects both circles. He will then show that this line intersects the
r-ecliptic at points that represent diametrically opposite points, Z and H. In fact,
what he will show is that Z and H represent points that are an equal distance from
the equator as measured along an arc of the meridian – that is, they represent points
that are joined by a diameter of the meridian.
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Figure 18: Perspective diagram of Planis. 2.

Ptolemy folds the plane of the meridian into that of the equator by constructing
ET perpendicular to GZ in the plane. He then points out that T functions as the

point of projection and proves that
_

AK =
_

GL, so that points Z and H represent the
points through which are drawn the r-δ-circles of the two equal δ-circles through K

177Lorch [1995, 273] takes this theorem to be about the horizons for observers on the equator. The

proof will, indeed, serve for such a situation; however, Ptolemy’s expression of the theorem and his

use of it, in Planis. 3, specifically refers to meridians. Moreover, when he uses this theorem for

horizons at the equator in Planis. 8, he first reminds the reader that such horizons are geometrically

equivalent to meridians.
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and L on the solid sphere. Hence Z and H represent K and L, which in turn are
joined by a diameter of the meridian.

With this as a lemma, both the construction and the proof of the next theorem
can be carried out entirely within the plane. In Planis. 3, Ptolemy argues that
an arbitrary r-horizon, constructed in the same way as the r-ecliptic, will not only
bisect the equator but will also intersect the r-ecliptic in two points that corre-
spond to diametrically opposite points. Using the lemma, this means that these two
intersections will be joined through the center of the equator by an r-meridian.
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Figure 19: Perspective diagram of Planis. 3.

Although Ptolemy carries out his proof in the plane it may still be useful to
consider the situation in the sphere, in order to better understand his procedure. In
Figure 19, he first constructs two circles, the r-ecliptic and a r-horizon, such that
they both bisect the equator. He then joins one of the intersections of these two
circles, point H, with the center of the equator, E, and extends HE to some point
on the horizon, say T ′. He then uses plane geometry to show that point T ′ coincides
with the other intersection of the r-horizon and r-ecliptic, point T .

Ptolemy’s exposition is somewhat obscured by the fact that he calls both of these
points T in anticipation of the fact that they will be shown to be one and the same.
As Maslama points out, it would have been clearer if he had proceeded by an indirect
argument [Kunitzsch and Lorch 1994, 14].

It should be stated that there is never any question that ABGD, HBD and
HAD are all circles. It is simply a matter of showing that point T ′, defined as the
intersection of line HE and circle HAG, also falls on circle HBD. Hence, we may
take Planis. 3 as demonstrating a case of conformality, namely that the points that
represent the intersections of two great circles are joined by diametrically opposite
points. In this case, the intersections of the r-horizon with the r-ecliptic are joined
by r-meridians, and hence by a diameter of the sphere.
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Planisphere 4–7

The next four sections show how the standard techniques of ancient plane trigonom-
etry can be used to calculate the radius of an r-δ-circle given its declination, δ,
and proceed to derive a number of the parameters of the planisphere using these
methods.

B

D'

A

Z
G

T

Pn

H E

D

K

Figure 20: Perspective diagram of Planis. 4.

In Figure 20, Ptolemy sets out circle ABGD as the equator and imagines a pair
of equal δ-circles through H and T . Since the declination of the δ-circles is given and
the radius of the equator, req, is always assumed to be 60p,178 where the radius of
the northern r-δ-circle is EK and the radius of the southern r-δ-circle EZ, Ptolemy
uses metrical analysis to show that179

Crd(90◦ + δ)
Crd(90◦ − δ)

=
EK

req
=

req

EZ
.

Because the diameter of a circle representing any great circle tangent to a pair of δ-
circles is simply the sum of the radii of the two corresponding r-δ-circles, this section
also shows how to calculate the size of any great circle with a known inclination to
the equator.

Ptolemy then uses these considerations to compute various parameters of the
planisphere: the sizes of the r-tropics, the size of the r-ecliptic, the distance between
the center of the r-ecliptic and the equator, the sizes of the r-δ-circles through the
beginnings of the signs, the size of an example r-horizon and the distance between

178This standard unit is stated in Planis. 4.3 (see page 88).

179In metrical analysis, given values are used to derive unknown values, which are then also said to

be “given.” In order to make this process explicit, we designate given numbers with numerals or

variables (as 90◦ and δ) and the objects whose values are known on this basis with letter names (as

AB).
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the center of this r-horizon and the equator. All of these values will be used in
sections 8–13.

For most of these computations, the declination will be given, but in the case
of the δ-circles through the beginnings of the signs, the declination must also be
calculated from the celestial longitude. For the purposes of this treatise, Ptolemy
assumes that the declination will be calculated using the sector theorem methods
of the Almagest [Heiberg 1898–1903, p. 1, 76–78; Toomer 1984, 69–70, Sidoli 2006].
For historical reasons, however, it is worth noting that they can also be derived from
the longitudes using analemma methods and plane trigonometry [Neugebauer 1975,
303–304].

Planis. 4–7 provide us with insight into the role of the δ-circles in the mathe-
matical development of the treatise. By showing how δ-circles are used to carry
out calculations, Ptolemy makes it clear that an interest in exact computation mo-
tivates his exposition. Whenever he sets out a circle that represents a circle on the
sphere such as an inclined great circle or a β-circle, Ptolemy uses the two tangential
r-δ-circles. This is presumably because the diameter of the circle representing any
circle is the sum of the radii of its two tangential r-δ-circles, and the radii of these
r-δ-circles can be readily calculated.

Planisphere 8 & 9

Ptolemy now proceeds to demonstrate that the planisphere produces the same values
for the rising-time phenomena as the methods of spherical geometry put forward
in the Almagest. The constructions and demonstrations in Planis. 8–13 are done
entirely within the plane, and Ptolemy repeatedly frames the arguments in this
section as claims that the planisphere is mathematically consistent ( �� 	̄ @ñÓ) with
the sphere. The rising-times of arcs of the ecliptic was one of the major topics of
ancient spherical astronomy (Alm. II 7–9) and the computation of their values from
the geometry of the planisphere constitutes an important goal of this treatise.180

Planis. 8 & 9 compute the rising-times of the signs of the zodiac for horizons
on the equator. In other words, these sections determine the right ascension of the
arc of each of the signs. Ptolemy begins by orienting the reader to the diagram.
In Figure 21, circle ABGD is the equator about center E and circle ZBHD is the
r-ecliptic about center T . Since every horizon at the equator coincides with the
meridian of locations 90◦ away in terrestrial longitude, an r-horizon at the equator
may be constructed on the planisphere in the same way as an r-meridian, by a
straight line, as KEN , through the north pole, E.

As he makes explicit in Planis. 10.1, Ptolemy imagines the movement of the
sphere by moving the horizon against a background of the fixed stars. Hence in
Figure 21, we produce the movement of the sphere by rotating an arbitrary line

180See Brunet and Nadal [1981] for a discussion of rising-time phenomena in Greek astronomy.
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Figure 21: Rising-times of the signs at horizons on the equator.

passing through E counterclockwise. So, where KEN is the horizon, the rising of
the quadrant from the winter solstice to the vernal equinox occurs as KEN rotates
about E from the position of ZEH to that of BED, and likewise for the other

quadrants. Clearly,
_

ZB rises with
_

AB,
_

BH with
_

BG,
_

HD with
_

GD and
_

DZ with
_

DA.
The goal of Planis. 8.1 is to show that if the r-horizon is at the beginning of

Pisces, as KEN , the geometry of the figure can be used to calculate the rising-time

of this sign. Since
_

KB rises with
_

BM as KEN rotates toward BED,
_

BM is the
right ascension, or time degrees, of Pisces. Hence, since 360◦ time degrees rise in 24h,

we compute the rising-time of Pisces by finding the angular value of
_

BM . Moreover,
by the symmetry of the figure, this will also be the rising-time of Virgo, Libra and
Aries.

The computation, which is given in Planis. 8.2, is somewhat involved but can be
sketched as follows. By the computations in Planis. 4–7, the sides of 4TKE are
given. Using two auxiliary theorems that result from the geometry of the figure, it
is possible to compute the sides of 4TFE from those of 4TKE, and using chord

table methods, it is then possible to compute ∠FTE = ∠MEB =
_

BM .
In Planis. 8.3, Ptolemy summarizes these results by a slightly different method,

using metrical analysis. Where KE, the radius of the r-δ-circle through the begin-
ning of the sign, rδsign, is given (Planis. 5 & 6), the first auxiliary theorem is used
to show that

3600
rδsign

= EN,

while the second auxiliary theorem shows that

EK − EN = 2EF.
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Hence,

rδsign − 3600/rδsign

2
= EF.

Then in right 4TFE, EF and TE are given, and the angles can be computed
with the chord table. This analysis forms the basis of the computations in Planis.
9, 12 & 13.

Planis. 9 uses a similar figure and the metrical analysis of Planis. 8.3 to find the

rising-times of the remaining signs. By setting
_

BK equal to the two signs of Pisces
and Aquarius, Ptolemy computes the right ascension of both. The difference then
gives that of Aquarius alone and the complement that of Capricorn. The remaining
signs are then known by symmetry. Ptolemy points out, as we have already stated,
that the numbers determined in this way are the same as those derived in the
Almagest using the methods of ancient spherical trigonometry (Alm. I 16).

Planisphere 10–13

The next two sections, Planis. 10 & 11, introduce the reader to the use of the
planisphere to model rising-time phenomena at latitudes other than the equator.
As in the Almagest, Ptolemy proceeds by using a paradigm latitude of 36◦, the
traditional value for Rhodes.

In Planis. 10, by considering the situation when the solstices are on the horizon,
Ptolemy develops a basic theorem concerning the symmetry of the figure (Planis.
10.2), points out how the figure shows that the rising-time of equal arcs on either
side of the same equinox are equal (Planis. 10.3), and introduces an important arc
that modern scholars call ascensional difference (Planis. 10.4). These are the basic
concepts used in Planis. 11–13.

Ptolemy begins, in Planis. 10.1, by orienting us to the figure. In Figure 22,
ABGD is the equator and ZBHD the r-ecliptic. The movement of the sphere is
clockwise, from B toward A, and so on. In fact, however, this movement is once
again imagined by changing the position of the horizon. The only two positions
considered in Planis. 10 are the cases where the solstices are in the two opposite
positions on the horizon, in which the horizon is ZKL and ZMN . Since a given
horizon is tangent to a pair of δ-circles, the locus of the center of the r-horizon will
be a circle about center E, as circle S′XO′. Hence, the r-horizon is carried as a
large epicycle on the deferent S′XO′. When it is in the position of circle ZKHL,
points Z and K are rising; in the position of Z ′K ′H ′′L′, points Z ′ and K ′ are rising;
in the position of N ′H ′M ′Z ′′, points N ′ and H ′ are rising; and in the position of
NHMZ, points N and H are rising.

In Planis. 10.2, Ptolemy demonstrates that when the solstices are on the horizon,
the arcs of the equator cut off by the intersections of the r-horizon and the equator
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Figure 22: (a) Diagram for Planis. 10. (b) Generalization of
Planis. 10, showing the two horizons at respec-
tively equal times before and after their positions
in (a).

are symmetrical about the cardinal points of the equator, that is
_

KA =
_

AM =
_

GL

=
_

GN and
_

BK =
_

BN =
_

DL =
_

DM .

In Planis. 10.3, he points out which arc of the ecliptic rise with a given arc of
the equator and argues that the rising-times of equal arcs of the ecliptic are equal
on either side of the same equinox. Since, however, his specific discussion of these
matters is only in terms of the rising-times of quadrants, it is not immediately
obvious how his discussion justifies this more general claim.

This is another example of Ptolemy giving a specific argument that provides a
paradigm proof that can be reproduced as a generalization. We consider any two
symmetrical positions of the horizon, say Z ′K ′H ′′L′ about center S′ and Z ′′M ′H ′N ′

about center Q′, such that
_

Z ′Z =
_

ZZ ′′. We then follow the approach of the proof

in Planis. 10.2 to show that
_

A′K ′ =
_

A′′M =
_

N ′G′ =
_

L′G′′ as follows.

Arguments from symmetry show that 4TET ′ is congruent with 4TET ′′, so
that ∠TET ′ = ∠TET ′′. Both ∠S′EK ′ and ∠O′EM ′, however, are right, since S′E
and O′E are perpendicular bisectors of equal chords in equal circles. Hence the
differences, ∠A′EK ′ and A′′EM ′, are equal, as are their vertical angles, ∠N ′EG′

and ∠L′EG′′. Therefore,
_

A′K ′ =
_

A′′M =
_

N ′G′ =
_

L′G′′.
These symmetries in the figure may be used to explain one of the fundamental

facts of rising-time phenomena – namely, that rising and setting times of equal arcs
of the ecliptic are equal for arcs symmetrically situated on either side of an equinox
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but not of a solstice.181 Z ′B and BH ′ represent two equal arcs of the ecliptic, since

by Planis. 2, Z ′ and H ′ represent points on two equal δ-circles. Moreover,
_

Z ′B

rises with
_

K ′B and
_

BH ′ with
_

BN ′. Now since,
_

A′K ′ was shown to equal
_

N ′G′,
_

K ′B =
_

BN ′. Therefore, since
_

Z ′B and
_

BH ′ rise with equal arcs of the equator,
they rise in equal times. This argument shows the validity of the general claim made
in Planis. 10.3. A similar argument will not hold for the solstices because the right
ascension must be corrected in opposite directions on either side of a solstice.182

The importance of these arcs of correction, called ascensional difference, is the
subject of Planis. 10.4. The arc of ascensional difference measures the difference
between the right and oblique ascension of an arc of the ecliptic [Neugebauer 1975,
36–37]. It is defined as the arc of the equator between (a) the meridian through
the intersection of the horizon with the equator and (b) the meridian through the
intersection of the horizon and the ecliptic. Finding the length of this arc furnishes
the simplest method of computing the oblique ascension of an arc of the ecliptic
given its right ascension.

In Figure 23, let circle ABGD be the equator, ZBHD the r-ecliptic and ZKHL

an obliqe r-horizon. On the sphere, the ecliptic will be Z ′BH ′D and the horizon
Z ′KH ′L, so that B is the vernal equinox, H ′ the summer solstice, D the autumnal
equinox and Z ′ the winter solstice. We imagine the motion of the sphere by rotating
the equator and the ecliptic clockwise around the polar axis, PnPs, while the horizon

remains stationary.183 Then at the oblique horizon, quadrant DH ′ sets with
_

DL,
while at an orthogonal horizon, it sets with quadrant DG. Hence, the ascensional

difference for quadrant DH ′ at the oblique horizon is
_

LG.

The ascensional difference of an arc of the ecliptic between an equinox and a
solstice can be used as a characteristic of latitude. At the equinoxes, as the sphere

181The earliest mathematical treatment of this topic that has survived is Euclid’s Phaenomena 12

& 13 [Berggren and Thomas 1996, 83–97].

182The planisphere makes this asymmetry in rising-times quite clear.

Let us consider the same horizon symmetrically placed on

either side of the solstices, such that Z′′K′′H ′′ is the po-

sition of the horizon at some time before the winter sol-

stice rises and Z′K′H ′ its position the same amount of time

after it has risen. In position Z′′K′′H ′′, the ascensional

difference, A′′K′′, is subtracted from the right ascension,

AA′′, whereas in position Z′K′H ′, the ascensional differ-

ence, A′K′, is added to the right ascension, AA′. Hence, the

oblique ascensions, AK′′ and AK′, will not be equal.
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183This is mathematically equivalent to Ptolemy’s procedure of moving the r-horizon against a

stationary equator.
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Figure 23: Perspective diagram showing ascensional difference.

revolves, the sun is carried on the great circle of the equator, DGBA, and at the
solstices it is carried on δ-circles imagined through H ′ and Z ′. Hence, at the summer
solstice, when the sun is carried on the δ-circle through H ′, sunset is later than that

at the equinox by the arc
_

LG. Likewise, it rises earlier by an equal arc. Therefore,
twice the ascensional difference of the principle quadrants will give the time difference
between the longest or shortest daylight and the equinoctial daylight. The difference
between the longest or shortest daylight and the equinoctial daylight was the most
common characteristic of latitude in Greco-Roman antiquity.

In Planis. 11, Ptolemy uses the geometry of the planisphere and chord table
methods to compute the ascensional difference for a quadrant of the ecliptic between
an equinox and a solstice at the latitude of Rhodes. He then calculates the longest
and shortest periods of daylight, and again points out that the values derived in this
way agree with those found using the methods of spherical trigonometry set out in
the Almagest.

Planis. 12 & 13 apply the corrective arc of ascensional difference developed in
Planis. 10, the computational procedure of Planis. 8, and the values derived in
Planis. 7 to compute the rising-times of the signs of the zodiac at the latitude of
Rhodes, using plane trigonometry. Again, Ptolemy points out that the values for
the rising-times of the signs as found in the planisphere agree with those derived
in the Almagest. This concludes the computational sequence of Planis. 4–13, and
indeed the whole first section.

Although historically the plane trigonometric methods of this treatise may have
been used, in conjunction with the analemma, to furnish an original calculation of
rising-times, this is not the function that these computations serve in Ptolemy’s
treatise. As they are presented in the Planisphere, they act as a check against an
already known set of rising-time values. The methods used and the values derived
constitute a strong numerical argument for the mathematical consistency between
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the planisphere and the solid sphere that we would attribute to the principle of
conformality. That is, Ptolemy shows that if points that represent equal arcs be
taken on the r-ecliptic, and if r-horizons and r-meridians be drawn through these,
then these r-horizons and r-meridians cut off the same arcs of the equator in the
planisphere as they do in the solid sphere.

Planisphere 14

In Planis. 14.1, Ptolemy gives a brief overview of the topics covered in the treatise so
far. Such summary remarks are Ptolemy’s usual way of introducing a major change
of subject matter. The remaining sections of the work will treat the construction
of r-β-circles and practical issues that arise in actually carrying out geometric con-
structions for the purposes of making instruments. This section marks a transition
in the mathematical methods of the treatise, as well as its subject matter. While
the first part centered around computation, the latter part focuses on geometric
problem solving.

At the beginning of Planis. 14, Ptolemy situates the problem as arising in the
context of instrument building. He tells us that the construction of the equator
and the r-δ-circles inside a given circle will be particularly useful for setting out
“the spider” ( �HñJ.º	JªË@) in the class of instrument known as “the instruments of

hours” ( �HA«A�Ë@ �HB
�
@). Although it is probably not possible to say with certainty

what Ptolemy meant by “the spider” based on his brief remarks, we need not follow
Neugebauer’s [1975, 866] claim that it must be “the movable network that carries
the pointers which indicate the positions of stars that are defined by ecliptic coordi-
nates,” as found on a plane astrolabe.184 The system of ecliptic coordinates, to which
Neugebauer refers, will not be introduced until the next section and here Ptolemy
only makes reference to the δ-circles of the equatorial coordinates. Moreover, an
“instrument of hours” is not necessarily an ancient or medieval plane astrolabe.

Although a plane astrolabe can be used in various ways for telling time, the
Arabic expression ālāt al-sā ↪̄at could also be a translation of one of the Greek idioms
denoting a clock. Moreover, we have both textual and archaeological evidence that
the Greeks made clocks that included a plane, disk map of the celestial sphere.
The anaphoric clock, which is described by Vitruvius (Arch. IX 8.8–10), featured a
planispheric face upon which a marker for the sun could be placed in various positions
along the ecliptic [Granger 1934, v. 2, 260–262; Rowland and Howe 1999, 117]. This
planisphere was then rotated hydraulically behind a brass grill that represented the
local coordinates and allowed the observer to read the time by the position of the
sun-marker against the grill. According to Vitruvius, the disk contained images of

184Both Neugebauer [1949] and Drachmann [1954] were of the opinion that the Planisphere was a

treatise on the astrolabe.
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the twelve signs of the zodiac. In such a device, the grill may have been called “the
spider.”

We know of fragments of the disks of two anaphoric clocks.185 On one of these,
found near the town of Salzburg, we find the names and images of the constellations
as well as regularly spaced holes along the ecliptic that would have carried the sun-
marker.186 The northern hemisphere has been depicted as it would appear to an
observer looking at the celestial sphere from the outside, as on a star globe.187 It
is clear that the Salzburg disk was produced using techniques equivalent to those
described in the Planisphere.

It is not certain whether this offhand remark about the spider and the instruments
of hours is a reference to astrolabes or anaphoric clocks, but it hardly matters.
Ptolemy’s project is not to describe the construction of a particular instrument, but
rather to develop a body of mathematical techniques, many of which he knows will
be of interest to instrument makers. Moreover, instrument making presents its own
set of problems, some of which have mathematical solutions.

The most obvious practical consideration in drawing a planispheric image of the
celestial sphere is that the plane of any actual diagram will be finite, whereas the
whole of the celestial sphere can only be stereographically mapped onto an infinite
expanse. Hence, it will be convenient to be able to draw the part of the celestial
sphere north of some arbitrary, southernmost bounding circle within any given circle.
The problem then is to draw the circles representing more northerly parallel circles
in the proper positions on the plate. Planis. 14 solves this problem.

Although the structure of Planis. 14 is confused and the text may have undergone
some corruption, the section appears to broadly follow the pattern of an ancient
problem. It begins with a method of construction that assumes the problem has
been solved in the mode of an analysis. This is followed by a synthesis that solves
the problem for the paradigm case of the equator. Finally, we are given the proof
that the stated construction solves the problem.

Ptolemy’s treatment is obscured by the fact that he solves the problem once for
only a single example, giving the construction and then showing that the construc-
tion holds. Moreover, the chosen example of the equator has some features that are

185See Neugebauer [1975, 870, n. 5 & 6] for descriptions of the fragments.

186If the holes were continued regularly in the missing part of the disk, there would be 182 or 183

of them. Images of the Salzburg disk are reproduced by Evans [1999, 252].

187Drachmann [1948, 25] claims that the orientation of the constellations is such that the motion

of the sun-marker on face of the clock will simulate the motion of the real sun across the sky. Any

such correspondence, however, would also depend on the overall orientation of the clock. Sleeswyk

and Huldén [1991, 40–41] try to account for the orientation of constellations on the Salzburg disk by

claiming that the projection was made from the north pole, somehow not noticing that the northern

constellations are depicted inside the ecliptic.
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unique from a geometric standpoint and detract from its status as a general case.
In Figure 24, Ptolemy shows how to construct the equator, SLM , about center E,
drawn with a radius equal to TK. As Anagnostakis [1984, 129–130] points out,
however, the construction and proof that Ptolemy gives can be used to produce any
circle north of the bounding circle.
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Figure 24: Extension of Planis. 14.

In Figure 24, let ABGD be the bounding circle of the plate and
_

DZ the arc-
distance of an arbitrary, southernmost bounding circle from the south pole. Line
DZ is joined and extended to meet GH, the tangent to ABGD at point G. The
line HT is dropped perpendicular to ED. Line HT can then be used to determine
the radius of any r-δ-circle on the plate as follows.

Let
_

GZ ′ be the declination of an arbitrary δ-circle. We join DZ ′ such that it
intersects line HT at point K ′. We draw a circle about E with radius EL′ = TK ′.
It will be the r-δ-circle corresponding to the original δ-circle. The proof follows the
final paragraph of Planis. 14. We show that 4MEL′ is congruent to 4DTK ′, so

that MN ′ ‖ DZ ′ and
_

DZ ′ is similar to
_

MN ′. Again, we see how Ptolemy gives the
solution of a specific case as a paradigmatic treatment of a more general problem.

Planisphere 15–17

The next three sections, introduced by Planis. 15.1, provide a basic treatment of
the circles of the ecliptic system, particularly the β-circles. Planis. 15.2 provides the
construction of the point corresponding to the pole of the β-circles, while Planis.
15.3 briefly discusses circles representing the great circles through the poles of the
ecliptic, which we call λ-circles, because they are circles of constant celestial longi-
tude. Planis. 16 gives the construction of the r-β-circle corresponding to a given
β-circle, and Planis. 17 shows that no two r-β-circles are concentric.
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Planis. 15.2, is a problem so simple that it requires no proof of its validity.
Although unusual for a problem, this lack of a proof, gives us insight into Ptolemy’s
assumptions. Planis. 15 makes it certain that Ptolemy considers the point on the
planisphere corresponding to a given point on the sphere to be determined when a
line is joined between the given point and the south pole through the cutting plane.
As usual, Ptolemy represents two planes in the plane of the figure, the cutting plane
and the solstitial colure.
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Figure 25: Perspective diagram of Planis. 15.

In Figure 25, we see the two planes in their solid configuration. Circle ABGD

is the equator, circle TGD′A the solstitial colure, and
_

PnT is set out equal to the
obliquity of the ecliptic, ε. Then point T is the pole of the ecliptic and of the β-
circles, so that when line TD′ is joined, its intersection with the diameter AG at
point K is the r-pole of the ecliptic. Ptolemy’s claim that, “this is in accordance
with what we described,” underscores his assumption, from the beginning, that the
reader understands that the correlates of individual points are to be found in this
way.

Planis. 15.3, gives a sketch of the construction of the circles representing great
circles through the poles of the ecliptic, the r-λ-circles. As Maslama points out,
this paragraph can be used to draw the r-λ-circle that passes through a star given
in ecliptic coordinates, S(λ, β) [Kunitzsch and Lorch 1994, 20]. This may be done
using either descriptive geometry or trigonometric computation, as follows.

Since the longitude of the star is given, the declination of the intersection of the
λ-circle and the equator, δ(λ), may be found by Alm. I 15. In Figure 26, let it be

set out as δ(λ) =
_

GW . Then by the method given in the commentary to Planis. 1,
we determine the intersection of the r-λ-circle and the r-ecliptic, say at point X.188

We join point X through E and extend it to the opposite point of the ecliptic at

188There are two intersections, but only one of them corresponds to the star’s longitude.
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Y . The three points X, Y and K, the r-pole of the ecliptic, then determine the
position of the r-λ-circle through the given star. As can readily be seen, all of the
lengths and angles set out in this construction can also be determined numerically
using chord table methods.
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Figure 26: Diagram for Planis. 15.3.

Planis. 16 is structured like a typical problem in Greek mathematics. It gives the
construction for an r-β-circle and then demonstrates that the circle so constructed
satisfies certain criteria, that is, that it bisects the r-δ-circle that intersects it in the
equinoctial colure. Again, Ptolemy depicts both the solstitial colure and the cutting
plane folded into a single plane.
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Figure 27: (a) Principal objects in Planis. 16. (b) Perspective
diagram of Planis. 16.

In Figure 27 (b), let ABGD′ be the equator, line ZT the diameter of the given
β-circle in the solstitial colure, and KL the diameter in the same plane of the δ-
circle that the β-circle about ZT bisects. The corresponding r-β-circle, MONF ,
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and r-δ-circle, OSFS′, are then drawn in the usual manner. It remains to show that
circle MONF bisects circle OSFS′.

Following Commandino [1558, f. 25v; Sinisgalli 1993, 146–147], some scholars
have maintained that the proof in Planis. 16 is a proof of circle preservation [Anag-
nostakis 1984, 133; Lorch 1995, 277]. In fact, however, Ptolemy simply assumes
the objects in question are circles. The proof is the usual complement to the con-
struction, standard in any ancient problem, which shows that the construction is
mathematically satisfactory. In this case, it shows that the circle drawn about MN

intersects the circle drawn about SS′ at the two points O and F on the diameter
OEF . This amounts to showing that key arcs of the r-δ-circle are similar to those
of the δ-circle, a case of orthogonal angle preservation.

It is worth noting that the construction of Planis. 16 can be used to compute
the size and location of the circle representing any given β-circle. Ptolemy begins
with the line ZT , a diameter of the β-circle, as arbitrary. In the context of Greek
geometry, this means we may take this line as given, either chosen at the mathe-
matician’s discretion or determined by the prior conditions of the problem. Since it
is a β-circle, “given” presumably means “given in celestial latitude,” β, but there is
no object corresponding to β in the figure. The key to understanding this situation
lies in noting that in constructing the r-β-circles, Ptolemy again uses the tangential
r-δ-circles.
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F

ε
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Figure 28: Extension for Planis. 16.

In Figure 28, we see that if both β and the obliquity of the ecliptic, ε, are given,
the declinations of the tangential δ-circles are determined by the sum,

ε + β = δ.

Hence, δ1 =
_

AE = ε + β, and δ2 =
_

BF = β − ε. Then, in Figure 27, we can

understand line ZT as given in terms of
_

AZ and
_

GT . Moreover, by the methods
set out in Planis. 4, we can calculate the size of the two tangential r-δ-circles.
Hence, we can determine the size and position of any r-β-circle, given in celestial
latitude. Here again, we see how the requirements of computation underly Ptolemy’s
geometric presentation.

Planis. 17 is a proof that no two r-β-circles are concentric. Ptolemy constructs
the diameters of two r-β-circles in the solstitial colure and then shows that their
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midpoints are not one and the same. It should be noted that the proof is about the
actual centers of the r-β-circles, not the points corresponding to the centers of the
β-circles.

Planisphere 18

Planis. 18 solves the special problem of constructing an r-β-circle that intersects
the bounding circle of a given plate. The version of this theorem in the Arabic
text and Hermann’s translation are somewhat different [Heiberg 1907, 255–257].
Since Hermann’s treatment introduces some objects which are also mentioned in
Maslama’s notes, it seems probable that the Latin translation contains alterations
that were made in the version of the text with which Maslama worked. Maslama
believed that this problem lacked a full proof and provided one modeled on the
proof in Planis. 16.189 We believe, however that our reading of the text shows
why Ptolemy would have considered the very brief argument he gives sufficient to
demonstrate that the problem has been solved.

Although Ptolemy calls the bounding circle the “always hidden circle”
( @ �YK. @ �éJ
 	®	mÌ'@ �èQK @YË@), the discussion makes it clear that mathematically this means
the southernmost bounding circle introduced in Planis. 14. This circle is depicted,
in Figure 13, using an analemma construction, in what is the most explicit case of
Ptolemy’s practice of folding multiple planes into the plane of the figure.
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Figure 29: Perspective diagram of Planis. 18.

In Figure 29, we find the three different planes that Ptolemy depicts in a single
plane in Figure 13, in their solid configuration. The southernmost circle, ZM ′HM ′′,

189In fact, Maslama provides two proofs for this section. The first shows that three points, one

of which is not found in the surviving Arabic version, lie on a circle, while the second shows that

the property demonstrated in Planis. 16 also applies for β-circles that intersect the bounding circle

of the plate [Kunitzsch and Lorch 1994, 24–28; Lorch 1995, 278–280]. The latter is unnecessary,

however, since Ptolemy’s proof in Planis. 16 is valid for any β-circle.
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has been folded at diameter ZH and both sides of it have been rotated into the plane
of the solsitial colure to the south, forming the semicircle ZMH in Figure 13. Next
the entire plane of the solstitial colure, ABGD, including the semicircle ZMH, has
been rotated around diameter AG into the cutting plane.

Ptolemy then proceeds as follows. He constructs the r-southernmost-circle in
the usual manner and finds point S, which corresponds to the northern endpoint

of the diameter DL of the β-circle. He then cuts off
_

NF and
_

NO on circle FNO

similar to
_

HM ′=
_

HM ′′ and points out that the circle through the three points F ,
N and O is the necessary r-β-circle. He does not bother with the proof because it

is obvious. Since
_

NF is similar to
_

HM ′ and
_

NO is similar to
_

HM ′′, points F and
O will represent points M ′ and M ′′ respectively. Hence, the r-β-circle is determined
by three points and obviously satisfies a basic case of conformality, since it intersects
the bounding circle at the appropriate places. In this version of the treatise, there
is no need for Maslama’s proof that the r-β-circle passes through the appropriate
point.

Planisphere 19

Planis. 19 solves the problem of constructing the line that corresponds to the β-
circle through the south pole. Both the construction and the proof are simple but
this is the only section in the work where we find Ptolemy working entirely in solid
geometry. Moreover, it supplies the kind of argument that must have been used to
show that any circle through the point of projection will be represented by a line.
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Figure 30: Perspective diagram of Planis. 19.

In Figure 30, let ABGD be the equator, AGKD′ the solstitial colure and D′K
the diameter of the β-circle through the south pole. Let D′K be extended to L and
erect MS perpendicular to AL. Ptolemy then uses the solid geometry of Elem. XI
to point out that all of the lines joining the points of the β-circle with D′ are in a
plane that intersects the plane of the equator in a line perpendicular to the solstitial



134 Sidoli and Berggren SCIAMVS 8

colure.
The diagram accompanying this section, Figure 14, contains some objects related

to the bounding circle that are not mentioned in the text. Maslama’s note, on
the other hand, provides a discussion of the bounding circle that includes, among
others, these objects, although differently named [Kunitzsch and Lorch 1994, 28–30].
There are a number of possibilities that could explain these circumstances – some
of the original text may have been lost, a scribe may have added these objects in
consultation with Maslama’s notes or independently, and so forth.

Planisphere 20

The final section returns to the interests of instrument makers by discussing the
practical construction of a grid of lines representing both the equatorial and ecliptic
coordinates. This is done so that the stars can be located on the planisphere, whether
they are given in equatorial or ecliptic coordinates.

Following a general description of the project, Ptolemy summarizes the results
that will be used for drawing the equator, its r-pole, the meridians, the r-ecliptic
and its r-pole, the r-β-circles, and the r-λ-circles. All of these constructions are fully
explained in the text, except that for the r-λ-circles. Since Ptolemy shows how to
locate the r-poles of the ecliptic, in order to draw an r-λ-circle, it suffices to locate
the two opposite points on the r-ecliptic corresponding to the longitude.

There are four known medieval methods for finding the r-λ-circles, three of which
are discussed by Maslama in his completion of the Planisphere [Vernet and Catalá
1965, 22–24; Anagnostakis 1987]. All four of these methods are exact as computa-
tional procedures, but the two that are most apparent from Ptolemy’s text would
present practical difficulties for instrument making. For this reason, Maslama ad-
vances a third procedure, which is easier to implement using a compass and straight
edge. We will discuss the first three methods, since they shed light on Ptolemy’s
project.190

The first method is the only one explicitly used by Ptolemy in the Planisphere.191

It consists in taking the declinations corresponding to each degree of celestial lon-
gitude (given in Alm. I 15) and using these to construct r-δ-circles, following the
method explained in the commentary to Planis. 1 (see page 115). Although this
method can be used to compute the size of the r-δ-circles exactly (see page 119), it
presents a number of practical difficulties when used for finding the corresponding
r-λ-circles. In order to carry out the construction accurately, the instrument maker
would need to use a highly precise protractor, since the difference between the nec-

190The fourth method, although the simplest for instrument makers, is not attested until later in

the medieval period. Hence, we will not consider it here [Anagnostakis 1987, 138–139]. Kunitzsch

[1981] dates the treatise containing this method to between 1246 and 1263.

191See Planis. 1, 4–6.
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essary declinations is sometimes quite small. Moreover, if one wished to draw every
r-λ-circle, this method would involve constructing, on the plate, 90 points between
about 24◦ of arc. Finally, in the region around the solstices, the variation in declina-
tion is so small that it would be almost impossible to use this method to mark the
divisions of the ecliptic with reasonable accuracy.192 As Maslama points out, this
method will only be approximate [Vernet and Catalá 1965, 22].

The second method is to set out the right ascensions corresponding to each degree
of celestial longitude (given in Alm. I 16) and use these to construct r-meridians.193

This method is much more practical, but there are still some difficulties. The right
ascensions in the Almagest are calculated at 10◦ intervals, with the expectation that
lesser intervals can be derived from these using linear interpolation. Unless the right
ascensions are recalculated at shorter intervals, some accuracy will be lost through
this interpolation. Moreover, in order to mark the right ascensions accurately on
the equator, one would once again need a protractor with a fine scale. Nevertheless,
as Maslama remarks, this method is better than the first [Vernet and Catalá 1965,
22].

In order to avoid the practical difficulties involved in the first two methods,
Maslama shows how to construct circles representing the great circles that intersect
the equator and the ecliptic such that the right ascension is equal to the longitude
[Vernet and Catalá 1965, 22–23; Anagnostakis 1987, 136–138]. In this way, any
division that can be carried out on the equator using compass and straight edge, or
a protractor marked with degrees, can also be carried out on the ecliptic.

There is no indication in the text as to which method Ptolemy intended his
readers to follow, or if he had considered any of these practical issues. In fact,
the only practical suggestion that Ptolemy makes involves setting out stars that
are given in equatorial coordinates, S(α, δ), as they probably were in the older star

192For the 20◦ on either side of the solstices the total difference in declination is 1; 31, 9◦.
193Vernet and Catalá [1965, 29, n. 41] give a different interpretation of this construction, which

although possible, is not the simplest way of understanding Maslama’s remarks. According to

Maslama the procedure is, “that we produce straight lines that go through the center of the equator

and we produce them from the equator at the right ascensions, degree by degree,”

©ËA¢Ó úÎ« PAî 	DË @ ÈYªÓ 	áÓ Aë 	Q�
m.�
�'ð PAî 	DË @ ÈYªÓ �èQK @X 	Q»QÓ úÎ« QÖ �ß �éÒJ
 �®�J�Ó A �£ñ¢ 	k 	Q�
m.�

�' 	à

@

�éÒJ
�®�J�ÖÏ @ �èQºË@ 	áÓ �ék. PX �ék. PX [Vernet and Catalá 1965, 22],

ut protrahamus lineas rectas per centrum circuli equatoris diei, et protrahemus eas ab

equatore diei super ascensiones unius gradus et unius gradus de spera recta [Kunitzsch

and Lorch 1994, 55].

These passages describe the construction of r-meridians using right ascensions.
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catalogs [Duke 2002]. For this case, Ptolemy explains how to set out the stars using
a simple division of the equator and a special ruler marked with the lengths of the
radii of the r-δ-circles at every degree. In this way, no guide circles need be drawn
on the plate. One simply rotates the ruler to the star’s right ascension and uses the
ruler to mark the position by its declination. As Ptolemy points out, however, this
method will not work for stars cataloged in ecliptic coordinates, as in the Almagest.
The fact that Ptolemy is so vague about the technical issues involved in working
with ecliptic coordinates may indicate that in his time, for practical purposes, star
positions were still generally handled in equatorial coordinates.

Ptolemy’s only suggestion for working with ecliptic coordinates, is to draw all the
r-β-circles and r-λ-circles and use these as guides. Since drawing a circle at every
degree is overly intricate, he suggests approximating this by drawing the circles at
every 2nd, 3rd, or 6th degree. Because these are the only common factors of 30 and
24, in this way the lines for the tropics and the meridians through the beginnings of
the each of the signs will be given in the diagram.

The text appears to end abruptly, which lead a medieval commentator to write
completing chapters and modern scholars to speculate on the content of the missing
sections. Whatever the case, both for the purposes of instrumentation and from the
perspective of mathematical theory, the Planisphere leaves considerable room for
improvement and supplementation. Nevertheless, it is a challenging and illuminating
text, and it stimulated a considerable body of work in the medieval and early modern
periods.
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ābit b. Qurra’s arabische Übersetzung der >ArijmhtikŸ
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