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I Introduction

The Tetsujutsu Sankei (Mathematical Treatise on the Technique of Linkage)3 is

a classic Japanese mathematical text written by Takebe Katahiro4 (1664–1739) in

1722. In this treatise, Takebe presents his most notable mathematical achievements,

including, for example, an efficient calculation of π up to 42 digits and three expan-

sion formulas for circular arc length in terms of the sagitta (maximum separation

between the arc and its chord).

Although Takebe’s book contains outstanding results of other early 18th century

Japanese mathematicians, the main purpose of the Tetsujutsu Sankei is to present

the author’s personal view on mathematics and mathematical research. According

to Takebe, there are three aims in mathematical research, i.e., rules, procedures and

numbers, and two methods to reach these aims, i.e., by reasonable evidence and by

numerical evidence. To illustrate his idea he employs twelve examples, including

the above-mentioned calculation of π and of arc length. Since it was a rare occasion

for a mathematician of the Edo period to express his philosophy on mathematical

∗This research is partially supported by the Ministry of Education, Science, Sports and Culture,

Grant-in-Aid for Scientific Research (C), 23540169, 2011-2015.

†This research was partially supported by the Ministry of Education, Science, Sports and Culture,

Grant-in-Aid for Scientific Research (C), 22549155, 2005-2008.

3At the first appearance, names of Japanese texts are followed by their English translations in

parentheses.

4The names of Japanese mathematicians are written in vernacular order: family name first, followed

by the given name.
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research, the Tetsujutsu Sankei has for generations attracted the interest of many

Japanese mathematicians.

Numerous attempts have been made by scholars on Takebe Katahiro’s achieve-

ments. The early studies are mainly made by Hayashi Tsuruichi (1873–1935),

Shibata Kwan (1886–1983), Fujiwara Matsusaburo (1881–1946), and so on.

See [Hayashi1911], [Hayashi1915], [Shibata1935], [Shibata1935b], [Fujiwara1941],

[Fujiwara1945], and Volume 2 of the History of Japanese Mathematics before the

Meiji Restoration [Fujiwara1954]. Hayashi’s almost all works can be found in his

collected works [Hayashi1937]. Recently, Fujiwara’s collected works on the history

of Asian mathematics was published as [Fujiwara2007].

As for the life and works of Takebe Katahiro in general we refer the reader

to our monograph [OgawaEa2008]. Recently published book [Horiuchi2010] (the

French original edition [Horiuchi1994]) describes in English the history of Japanese

mathematics in the Edo period, especially Takebe and his teacher Seki Takakazu.

Takebe’s calculation of π and arc length was considered in [Sugiura1982]

and [Murata1982]. The reconstruction of his calculations with a com-

puter began from 1980s downward. The first attempt was most proba-

bly [Wada1983] in 1983 and followed by [Morimoto1990], [Morimoto1990b],

[Ogawa1997], [Ogawa2000], [Morimoto2003], and so on. Some studies have since

increased ([Horiuchi1994b], [MorimotoEa2004], [Morimoto2006], [Morimoto2007],

[Nonaka2010], and [Morimoto2011]). In particular, detailed studies on some chap-

ters of the Tetsujutsu Sankei, that include the translation of the text into modern

Japanese, can be found in [Ogawa1998], [Ogawa1998b], [Ogawa2002], [Ogawa2007]

and so on. The collected works of Seki Takakazu [HirayamaEa1974] contains a com-

mentary on Seki’s mathematics in English. There are two recently published mono-

graph on Seki’s life and works [Sato2005] and [UenoEa2008], which put together

much research on Seki [Ogawa1996], [Sato1996], for example.

The general history of Japanese traditional mathematics was compiled first by

Endō Toshihide (1843 – 1915) [Endo1896], which later has been corrected and

augmented. The History of Japanese Mathematics before the Meiji Restoration

[Fujiwara1954] in five volumes was prepared by Fujiwara during the World War

II but published by the name of the publishing committee in 1954. The history of

Japanese mathematics was also written in English as early as in 1910s ([Mikami1913]

and [SmithEa1914]).5 The bibliography on the Japanese traditional history writ-

ten in European language are listed in [Ogawa2001]. The following books also

are concerned with history of mathematics in Japan: ([Mikami1921], [Murata1981],

[OgawaEa2003].) For the history of Chinese traditional mathematics see [Li1984],

[Martzloff1987], and [Qian1990].

5As these two books are already obsolete, a new general history of Japanese mathematics in English

is urgently needed.
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There are few English translations of Takebe’s main works, while

[TakenouchiEa2004] is the only one today, but it is a preliminary edition. In this

connection, the most popular mathematical book in Japan, the Jinkōki, was trans-

lated into English [WasanInst2000], in which we can learn how to use the abacus.

Furthermore, [Kojima1963] is an introduction to the Japanese abacus.

In this English translation of the Tetsujutsu Sankei, we have made an effort

to capture the original manner in which Takebe discusses mathematics. At the

same time, to make his work more understandable for the reader, we have included

additional historical background and commentary, which interpret his ideas in light

of the more familiar mathematical terminology and methods that we employ today.

II The author

At the age of thirteen, Takebe Katahiro became a student of Seki Takakazu (ca.1642

– 1708)6 , an illustrious master of mathematics. Under the guidance of his master, he

learned, among others, mathematics of the Yuan dynasty from the Suanxue Qimeng

(Sangaku Keimō in Japanese, Introduction to Mathematics) 7 written in 1299 by Zhu

Shijie (Shu Seiketsu in Japanese). By his mid-thirties, Takebe had already published

three books: the Kenki Sanpō (Mathematical Methods to Investigate the Minute) in

1683 the Hatsubi Sanpō Endan Genkai (Colloquial Commentary on Series of Oper-

ations in the Hatsubi Sanpō) in 1685; and the Sangaku Keimō Genkai Taisei (Great

Colloquial Commentary on the Suanxue Qimeng) in 1690. See [Morimoto2004] and

[Ogawa2005].

The first book, Kenki Sanpō, contains answers to the problems raised in the

Sūgaku Jōjo Ōrai (Text on Multiplication and Division in Mathematics) written in

1674. See [Sato1996b], [Fujii2002], [Takenouchi2004], and [Takenouchi2006].

The second book, the Hatsubi Sanpō Endan Genkai, is an annotation to Seki

Takakazu’s Hatsubi Sanpō (Mathematical Methods to Explore Subtle Points). The

latter book was difficult to understand, prompting need for an annotation. See

[Ogawa1994], [Ogawa1996] and [Sato1996].

The third book, the Sangaku Keimō Genkai Taisei, is a detailed annotation to

the important Chinese work Suanxue Qimeng. Together with the Suanfa Tongzong

(Sanpō Tōsō in Japanese, Systematic Treatise on Mathematical Methods) by Cheng

Dawei (Tei Daii in Japanese, 1533–1593) of the Ming dynasty, the Suanxue Qimeng

most influenced early 17th century Japanese mathematics.

Takebe Katahiro also began in 1683 an encyclopedic work, the Taisei Sankei

(Great Accomplished Mathematical Treatise), in collaboration with his master Seki

6Seki’s birth year is estimated between 1640 and 1645.

7At the first appearance, names of Chinese texts are followed by their Japanese reading and their

English translation in parentheses.
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Takakazu and his brother Takebe Kata’akira (1661–1716). See [Komatsu2007] and

[Ogawa2006]. Their intent was to reveal the entirety of mathematics of their day.

By the mid-1690’s, they had completed a preliminary version in twelve volumes.

After that, Takebe Katahiro took leave of mathematics as an appointed government

official, and Seki Takakazu a respite due to illness. It was not until 1711 that

the entire twenty volumes of the Taisei Sankei were completed, mainly due to the

individual effort of Takebe Kata’akira. This evolution is recorded in the Takaebe-shi

Denki (Biography of the Takebe). See [Fujiwara1954].

Between 1704 and 1715, Takebe Katahiro served as an officer of the Shogunate

and completed no mathematical works. In 1716 Tokugawa Yoshimune became the

eighth shōgun. The new shōgun had a keen interest in the science of calendars

and mathematics, and could appreciate Takebe Katahiro’s mathematical ability. He

surveyed the land in 1720 and edited the Kuni Ezu (Illustrated Atlas of Japan) in

1725. Being encouraged by the shōgun, in addition to writing about the science of

calendars, Takebe resumed writing books on mathematics. This was the context in

which he wrote in 1722 the book under our consideration, the Tetsujutsu Sankei. The

same year he wrote the Fukyū Tetsujutsu (Master Fukyū’s Technique of Linkage),

and the Shinkoku Gukō (A Humble Consideration on the Time). A prolific author,

Takebe later wrote the Saishū Kō (A Consideration on the Period of Years) in 1725;

the Ruiyaku Jutsu (Methods of Repeated Division) in 1728.

He wrote several other books whose dates are unknown: the Koritsu (Arc Rate)

(see [Fujiwara1941]), the Sanreki Zakkō (Various Considerations on Mathematics

and the Calendar) (see [Fujiwara1945] and [SatoS1995]), the Hōjin Shinjutsu (A New

Method of Magic Squares), the Kyokusei Sokusan Gukō (Humble Considerations of

the Observation and the Calculation of the Polestar), the Chūhi Ron (Imprecision

in Measurement), and the Jujireki Gi Kai (Commentary on the Time Granting

Calendar).

Fujiwara [Fujiwara1954] claimed that Takebe Katahiro also wrote the Enri Kohai

Jutsu (Studies on the Circle — Methods to Calculate the Length of Circular Arc),

which is sometimes called the Enri Tetsujutsu (Technique of Linkage in Studies on

the Circle). Recently many scholars raised questions about Fujiwara’s claim.

In 2005, a copy of a book entitled the Kohai Setsuyaku Shū (Method of Pulvelizing

Back Arc) was discovered. It describes Takebe’s discovery of infinite expansion

formula of the square of arc length in terms of sagitta, and was recognized as a book

of Takebe Katahiro (see [Yokotsuka2004] and [Yokotsuka2006]).

Takebe retired in 1733, when he was seventy years old, and he died six years later

in 1739, at the age of seventy five.
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III Organization of the Tetsujutsu Sankei

The Tetsujutsu Sankei begins with a Preface, followed by a Catalogue of twelve

examples of mathematical investigation presented in the book:

Part 1. Four Examples on Investigation of the Rule and Law

1. Investigating Multiplication and Division (Investigation of rules by rea-

sonable evidence)

2. Investigating the Rule of Element Placement (Investigation of rules by

reasonable evidence)

3. Investigating the Rule of Reduction (Investigation of rules by numerical

evidence)

4. Investigating the Rule of Finding Differences (Investigation of rules by

numerical evidence)

Part 2. Four Examples on Investigation of the Reason of Procedure

5. Investigating the Procedure of Repeated Exchange of Weavers (Investiga-

tion of procedures by reasonable evidence)

6. Investigating the Procedure for Finding the Extreme Value of a Paral-

lelepiped (Investigation of procedures by reasonable evidence)

7. Investigating the Procedure of Arithmetic Removal (Investigation of pro-

cedures by numerical evidence)

8. Investigating the Procedures for Finding the Surface Area of Sphere (In-

vestigation of procedures by numerical evidence)

Part 3. Four Examples on Investigation of the Numerical Quantity

9. Investigating Numbers Stemming from Pulverization (Investigation of

numbers by reasonable evidence)

10. Investigating Numbers Related to Square Root Extraction (Investigation

of numbers by reasonable evidence)

11. Investigating Numbers Related to the Circle (Investigation of numbers by

numerical evidence)

12. Investigating Numbers Related to the Arc (Investigation of numbers by

numerical evidence)

The author claims there are three aims in mathematical research; the rule and

law, the reason of procedure, and the numerical quantity. Three aims are sometimes

called, in short, the rule, the procedure and the number, respectively. He also

claims there are two means of investigation; one by reasonable evidence and other

by numerical evidence. The organization of twelve examples reflects the author’s

three aims and the two means in mathematical investigation. After each example,

the author explains why this example is classified to the aim and the method. After
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presenting these twelve examples, there is a single chapter on Takebe’s philosophy of

mathematics, in which the author describes the psychology of mathematicians and

the characteristics of mathematical research. The book ends with an appendix that

Takebe added in 1725.

IV Editions of the Tetsujutsu Sankei

The version of the Tetsujutsu Sankei which serves as the source of our English

translation is preserved in the National Archives of Japan. Since this text is said

to be dedicated to the shōgun Tokugawa Yoshimune, it was carefully preserved and

may be regarded as authoritative.

The Fukyū Tetsujutsu is in some way very similar to the Tetsujutsu Sankei. Fukyū

is a pseudonym of Takebe Katahiro. An English translation of the Fukyū Tetsujutsu

is included in [TakenouchiEa2004]. Although the Fukyū Tetsujutsu and the Tetsu-

jutsu Sankei have nearly identical introductions and appendices, the organization of

the Fukyū Tetsujutsu is quite different, and has distinctive content:

1. Searching for the rule of multiplication (the first half of Chapter 1 of the Tet-

sujutsu Sankei)

2. Searching for the rule of division (the second half of Chapter 1 of the Tetsujutsu

Sankei)

3. Searching for the procedure of permutation (Chapter 5 of the Tetsujutsu

Sankei)

4. Searching for the square root (Chapter 10 of the Tetsujutsu Sankei)

5. Searching for the rule for placing the element (Chapter 2 of the Tetsujutsu

Sankei)

6. Searching for the procedure of preparing medical prescriptions (No correspond-

ing chapter in the Tetsujutsu Sankei)

7. Searching for and understanding the rule of finding differences repeatedly in the

research of the procedure of the quadrangular pile (Chapter 4 of the Tetsujutsu

Sankei)

8. Searching for the procedure to find the surface area of a sphere (Chapter 8 of

the Tetsujutsu Sankei)

9. Searching for the rule of arithmetic removal (Chapter 7 of the Tetsujutsu

Sankei)

10. Searching for the circle constant (Chapter 11 of the Tetsujutsu Sankei)

11. Searching for the arc constant (Chapter 12 of Tetsujutsu Sankei)

12. Searching for the procedure of decomposition (Chapter 9 of the Tetsujutsu

Sankei)

Note that Chapters 3 and 6 the Tetsujutsu Sankei have no corresponding chapters
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in the Fukyū Tetsujutsu, while only the latter discusses medical prescriptions. We

adopt the viewpoint that the Fukyū Tetsujutsu is a different work rather than revised

version of the Tetsujutsu Sankei. The relation between these two books is a subject

for further research.

The most reliable manuscript of the Fukyū Tetsujutsu is preserved in the Uni-

versity of Tokyo library. Another interesting manuscript of the Fukyū Tetsujutsu

is held in the Kanō collection of Tōhoku University, in which the calculation of π

is carried out to 70 digits. It is beyond the scope of this study to compare these

manuscripts. See [Komatsu2000], [Komatsu2004], [Ogawa2004], and [Suzuki2005].

We remark that many manuscripts of the Fukyū Tetsujutsu have the title Tetsu-

jutsu Sankei but maintain the particular table of contents for the Fukyū Tetsujutsu

which we have described above. The Tetsujutsu Sankei which we have translated

here is not the Fukyū Tetsujutsu that sometimes bears the same name, but rather,

the distinct work which we feel merits consideration in its own right.

V Translation
1r

Preface to the Mathematical Treatise on the Technique of Linkage

[1]With the technique of linkage we can understand the reason of procedure inves-

tigating and linking [evidence]. [2]Generally speaking, there are two methods of

investigation, one by reasonable evidence, [3]another by numerical evidence. [4]If

investigating a [single] case is not sufficient for finding out the reason of procedure,

investigate two cases. [5]If two cases are not enough, investigate three cases. [6]Even

though the reason of procedure is deeply buried, if one keeps investigating enough

times, a point of maturation will be reached where it is impossible not to find it.
[7]But it happens that what is hidden can be found out immediately in one step;
[8]also it happens that what is simple can be found out gradually in several steps.
[9]Certainly, nobody is purely straight in man’s character. [10]In nature some peo-

ple are fast and others are slow [in understanding]; all these cannot be certain.
[11]By this, sometimes there are bending and stretching: if one stretches, he gains1v

knowledge; if one bends, he stagnates. [12]Therefore, there are indeed differences in

understanding; some people are slow and dull, while others are fast and sharp.
[13]Mathematics consists of the establishment of the rule and law, the clarification

of the reason of procedure, and the calculation of the numerical quantity. [14]These

are arranged in direct [order] if the reason is discerned, procedures are applied and

numbers are obtained by the procedures, [15]and in inverse [order] if procedures are

tested according to numbers and a reasons is sought by the procedures. [16]The di-

rect and the inverse [orders] are all unified in the technique of linkage. [17]Therefore,

establish the rule and law by investigation, clarify the reason of procedure by in-

vestigation, and determine the numerical quantity by investigation. [18]Accordingly,
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recognizing three [aims], the rule, the procedure and the number, distinguishing

numerical and reasonable evidence and citing twelve examples of procedures, we

describe an outline of investigation and proclaim the technique of linkage. [19]In

addition, I explain that my distorted and inconsistent native character cannot really

be changed and state the reason why this book is written.2r
[20]According to the History of the Sui dynasty, Zu Chongzhi “wrote a book

called the Zhuishu (Technique of Linkage). [21]There were neither schol-

ars nor officers who could understand the deep contents of the book.
[22]Therefore, they abandoned it [as curriculum] and no longer cared it.”
[23]Having been led to use the word zhui (Linkage) and reflecting deeply, we cannot

help thinking that Zu Chongzhi was a genius of antiquity. [24]Certainly, this mar-

velous truth cannot be recognized through education nor can it be reached through

contemplation.
[25][Lunar] January 7, Mizunoe Tora, the seventh year of Kyōhō.
[26]Written by Fukyū, a humble aged samurai at the city of Edo in Musashi

Province.

Catalogue
3r

Four Examples on the Investigation of the Rule and Law

I. Multiplication and Division (Investigation of rules by reasonable evidence)

II. Element Placement (Investigation of rules by reasonable evidence)

III. Reduction (Investigation of rules by numerical evidence)

IV. Finding Differences (Investigation of rules by numerical evidence)

Four Examples on the Investigation of the Reason of Procedure

V. Weavers (Investigation of procedures by reasonable evidence)

VI. Parallelepiped (Investigation of procedures by reasonable evidence)

VII. Arithmetic Removal (Investigation of procedures by numerical evidence)

VIII. Sphere (Investigation of procedures by numerical evidence)3v

Four Examples on the Investigation of the Numerical Quantity

IX. Decomposition (Investigation of numbers by reasonable evidence)

X. Root Extraction (Investigation of numbers by reasonable evidence)

XI. Numbers Related to the Circle (Investigation of numbers by numerical evi-

dence)

XII. Numbers Related to the Arc (Investigation of numbers by numerical evi-

dence)

A theory of proper character
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The Technique of Linkage
4r

Four Examples on the Rule and Law

I. Investigating Multiplication and division

[1]Multiplication. [2]Suppose there are 12 koku of [unhulled] rice. [3]The

price is 27 sen in silver per koku. [4]Question: How much is the total

price?
[5]Answer: 324 sen in silver.

[6]Because the price of 1 koku is 27 sen in silver, for 2 koku, two prices added

together, the price is 54 sen in silver. [7]For 3 koku, three prices added together, the

price is 81 sen in silver. [8]For 4 koku, four prices added together, the price is 108

sen in silver. [9]For 5 koku, five prices added together, the price is 135 sen in silver.
[10]For 6 koku, by addition it is 162 sen. [11]For 7 koku, by addition it is 189 sen.4v
[12]For 8 koku, by addition it is 216 sen. [13]For 9 koku, by addition it is 243 sen.
[14]For 10 koku, by addition it is 270 sen. [15]For 11 koku, by addition it is 297 sen.
[16]For 12 koku of rice, by addition we obtain 324 sen, [17]which is the corresponding

price.

[18]After we obtain the true number decomposing repeatedly in this way ([19]this

is, the so-called calculation at sight), we search for a simplified procedure. First,

we take pairs of one-digit numbers between 1 and 9, form 45 products from “one

times one makes one” till “nine times nine makes eighty one,” and write the

multiplication chant. [20]Secondly, recite and memorize this table. Then place5r

12 koku of rice. By 27 sen, the price of a koku, first we multiply 10 [koku]

and get 200 sen saying “one times two makes two,” and 70 sen saying “one

times seven makes seven.” Secondly, [by 27] we multiply 2 sen and get 40 sen

saying “two times two makes four,” and 14 sen saying “two times seven makes

fourteen.” By adding these values we obtain the corresponding price 324 sen

in silver in one step. Understanding this procedure, we establish the rule of

multiplication.

[21] Main procedure to solve the problem [22]Place the koku of rice.
[23]Multiply this by the price in silver per koku and we obtain the corre-

sponding price in silver.

[24]Although we seem to obtain the price immediately without decomposing re-

peatedly, in fact we do not obtain [it] immediately; [25]the repetition is done in

one step. [26]Generally speaking, the decomposition is the basis of number de-

termination and the establishment of rules is the basis of procedure application.
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[27]Therefore, in Mathematics, it is most important to establish rules.

[28]Division. [29]Suppose there are 15 koku 6 to of rice. [30]Let it be5v

divided by 6 people. [31]Question: How much is the share per person?
[32]Answer: 2 koku 6 to per person.

[33]If each person is given 1 koku of rice, we need 6 koku for 6 people. [34]This is

less than what we have. [35]If each person is given 2 koku of rice, we need 12 koku

for 6 people. [36]This is again less than what we have. [37]If each person is given 3

koku of rice, we need 18 koku for 6 people. [38]We know that this is, instead, more

than what we have at first. [39]Therefore, we know each person’s share is 2 koku

and something. [40]We remove 12 koku, which we need if we distribute 2 koku to 6

people, from what we have at first. The remainder is 3 koku 6 to. [41]If each person

is given 1 to, we need 6 to for 6 people. [42]This is less than the remainder. [43]If

each person is given 2 to, we need 1 koku 2 to for 6 people. [44]This is less than the6r

remainder. [45]If each person is given 3 to, we need 1 koku 8 to for 6 people. [46]This

is less than the remainder. [47]If each person is given 4 to, we need 2 koku 4 to for 6

people. [48]This is less than the remainder. [49]If each person is given 5 to, we need 3

koku for 6 people. [50]This is still less than the remainder. [51]If each person is given

6 to, we need 3 koku 6 to for 6 people. [52]This is exactly equal to the remainder.
[53]Therefore, we know that each person’s share is exactly equal to 6 to. [54] Because

the remainder is exhausted completely by 3 koku 6 to that is, 6 to times 6 persons,

each person’s share is found to be 2 koku 6 to of rice.

[55]After we obtain the true number decomposing and investigating in this way,

we search for a simplified procedure. We place the original koku of rice in the6v

Reality row and the number of people in the Norm row. First, we guess

the first quotient is 2 koku and, reciting the multiplication chant, multiply the

Norm row by it saying “two times six makes twelve” and subtract it from the

Reality row. Then we guess the second quotient is 6 to, multiply the Norm

row by it saying “six times six makes thirty six” and see the Reality row is

completely exhausted by it. Understanding this [operation], we establish the

rule of division by quotient.
[56]Also, we take two numbers from 1 to 9, one for the Reality row and other

for the Norm row, ([57]where 1 shall not be taken for the Norm row, and the

number in the Reality row shall not be greater than the number in the Norm

row,) we calculate the quotient and the remainder dividing the Reality row

by the Norm row and write the nine-division chant. [58] Recite and memorize

this chant. Then divide, from the higher digit, the Reality row by the Norm

row; saying “let six divide one and get fourteen” and “let six meet six and get

ten”to get the first quotient 2 koku, and then saying “let six divide three and7r

get heavenly five” and “let six meet six and get ten” to get the second quotient
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6 to, we establish the rule of nine-division.

[59] Main procedure to solve the problem [60]Place the koku of rice in

the Reality row and the number of persons in the Norm row. [61]Apply

the division to this [configuration] and [62]we obtain the koku of rice per

person.

[63]Although, relying on the division by quotient or on the nine-division [chant],

we seem to obtain the solution immediately without investigation, but it is

not the case. [64]We investigate just in one step. [65]It is true that we cannot

understand this rule from the beginning. [66]After employing the decomposition

we investigate and understand how to organize [the results], and compose the

rule’s chant and employ it.

[67]The above two rules of multiplication and of division are to determine numbers

by decomposition and to investigate and understand the rules relying upon rea-

sonable evidence. [68]As they are very simple, there are no secrets hidden in the7v

determination of numbers according to the rule; the reasons are clearly manifested.

[69]Generally speaking, Mathematics culminates in the clarification of reasons

and the determination of numbers. [70]It is required to rely on the decomposi-

tion in order to determine numbers, and to discern the reasons in order to apply

a procedure. [71]The first and the latter, both jointly form the rule. [72]But if

we try to scrutinize only relying upon reasons, we cannot always attain our ob-

jective; [73]inevitably we stagnate. [74]If we try to scrutinize only relying upon

numbers, we cannot always attain our objective; [75]inevitably we are confused

in reasons. [76]There are two kinds of reasoning: if, without distinguishing the

direct and the inverse applications of the procedure, we simply apply thousands

of procedures by decomposing [examples], we cannot profit from the advantages

of mathematical rules and stagnate in direct application of procedures; [77]and

if, without investigating [examples], we simply try to find [the solution] immedi-

ately only relying upon reasons, we can never attain the [proper] understanding8r

in inverse application of procedures because there is no basis of reasonable ev-

idence. [78]Therefore, if we distinguish the direct and the inverse applications

of procedures, clarify numerical and reasonable evidence, discern according to

form and character if the numbers and the rules are exhaustible or not, and in-

vestigate [examples] deeply, then there are no rules which cannot be understood

and no numbers which cannot be determined.



168 M. Morimoto and T. Ogawa SCIAMVS 13

II. Investigating the Rule of Element Placement

[1]We do not know yet in what age the rule of element placement started. [2]It

was in the Zhiyuan period of the Yuan dynasty that Guo Shoujing used this

rule when he completed the Shoushili (Time Granting Calendar). [3]In the Dade

period of the same dynasty, this rule was explained in detail in the Suanxue

Qimeng (Introduction to Mathematics) by Zhu Shijie. [4]This is a mysterious

method to obtain the procedure to determine numbers. [5]Although it is dif-

ficult to explain how marvelous it is to understand this rule, we try to state8v

an example of my understanding relying upon evidence and present here the

meaning of investigation.

[6]Suppose there is a rectangle of area 180 [squared] bu. [7]Given: The

sum of the length and width is 27 bu. [8]Question: How much are the

length and width respectively?
[9]Answer: width 12 bu, length 15 bu.

[10]When we have an area and extract the square root from it, we place the area in

the Reality row, make the Square row empty and place one rod in the Corner row and

extract the square root using three rows. [11]When we have a volume and extract the

cubic root from it, we place the volume in the Reality row, make the Square and the

Side rows empty and place one rod in the Corner row and extract the cubic root using

four rows. [12]When we have an [4 dimensional] accumulation and extract the 3-root

from it, we place the accumulation in the Reality row, make the Square and the two

Side rows empty and place one rod in the Corner row, and extract the 4-root using9r

five rows.[13] In this way, it will be taken as evidence that according to the number

of multiplications we make use of lower and lower rows. [14]Generally speaking, if

we can exhaust the Reality row by extraction, this is not because we are subtracting

numbers with the same sign. [15]We must understand that, only by “adding numbers

if they have the same sign and subtracting numbers if they have different signs,” do

we attain the solution. [16]Therefore, if the number in the Reality row is negative,

then the Corner row is always positive. [17]Because the positive and the negative

numbers appear simultaneously, the root can be extracted naturally. [18]Also, the

obtained side goes back to the square accumulation [i.e., area] if we multiply it by

itself, to the cubic accumulation [i.e., volume] if we multiply it by itself twice, and to

the 3-multiplicational accumulation [i.e., 4 dimensional accumulation] if we multiply

it by itself thrice. This is an ordinary manipulation. [19]Considering that the true

number is always placed in the Reality row, we make the Reality row empty and

place a counting rod in the Square row and call it a virtual side. If we multiply the9v

virtual side by itself, the Reality and Square rows become empty and the rod goes

down to the Corner row; we use three rows in total. [20]This is the virtual square

accumulation. [21]If we multiply the virtual side by itself twice, the Reality, the
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Square and the Side rows become empty and the rod goes down to the Corner row;

we use 4 rows in total. [22]This is the virtual cubic accumulation. [23]If we multiply

the virtual side by itself thrice, the Reality, the Square, the [first] Side, and the

[second] Side rows become empty and the rod goes down to the Corner row; we use

5 rows in total. [24]This is the virtual 3-multiplicational accumulation. [25]From the

preceding argument, we understand that the rod which was first placed in the Square

row goes down to the Corner row if the multiplication is repeatedly operated. [26]In

this situation, if we cancel out the true value of accumulation with the virtual value

of accumulation, it seems at first reasonable that the total cancellation happens,

but because the true and the virtual values are of different kinds, the result cannot10r

be empty in number; the [true] value of accumulation stays in the Reality row as

a negative number and the one rod stays in the Corner row as a positive number

after several empty rows. ([27]If the value at the Reality row is positive, then [the

value in] the Corner row is negative.) [28]In this way, we can establish naturally the

complete equation to be extracted. [29]After that, we set the quotient, multiply up

from the Corner row to the Reality row, “adding numbers if they have the same

sign and subtracting numbers if they have different signs;” finally we can extract

the root from this. [30]The obtained quotient is the side which we were looking for.

[31]In the preceding, making the Reality row empty and placing a rod in the

Square row, we name what we are to seek, find the same kind of true and virtual

numbers by the ordinary manipulation, and cancel out. It is a mysterious10v

marvel to investigate and understand that we can thus establish the complete

equation to be extracted using corresponding rows.

[32]Suppose there are a few articles and distribute them to a few persons. To solve the

problem to find the number of articles per person, we place the number of articles

in the Reality row and the number of persons in the Norm row and execute the

division to determine each person’s share. This is an ordinary procedure. [33]By the

new procedure, making the Reality row empty and placing one rod in the Square

row, we represent the virtual share per person, which, multiplied by the number of

persons, represents the virtual total number of articles. [34]If we cancel it with the

true total number, we find naturally the equation to be extracted with two rows,

Reality and Norm. At once, we obtain the number of articles per person by the rule

of division by quotient.

[35]It is routine reasoning to divide the number of articles by the number of

persons and to get the share per person. [36]Although it seems not so easy, if11r

we employ the rule of element placement, we can find naturally the equation

to be divided without discerning the reason that division should be employed.

How splendid it is!
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[37]Also, suppose there is a rectangle with known area. The problem is to find how

long the length and width are when their difference is given. In an old method, we

first multiply the area of the rectangle by 4 and add the square of the difference of

the length and width to it, and extract the square root from it. Thus, we obtain

the sum of the length and width, from which we subtract the difference, halve the

result, and obtain the width. Adding the difference to it, we obtain the length.
[38]In another method, we place the area of the rectangle in the Reality row, the

difference of the length and width in the Square row, and one rod in the Side row.

We obtain the width by extracting the root from this. Because there is a number in

the Square row, we call this the square root extraction with subordinate.
[39]In the new procedure, we make the Reality row empty and place a rod in the11v

Square row. We call this the virtual width. We form the virtual length by adding

the difference to the virtual width, and the virtual area by multiplying the virtual

length and the virtual width. We cancel out the virtual area with the true area and

find naturally the equation with subordinate, from which we extract the root.

[40]Like in the old method, we arrange the area of the rectangle at the four cor-

ners and place the square, the side of which is the difference of length and width,

in the center. Considering this figure of the square of the sum of length and

width, we can find easily the sum of the length and width. This reason works

quite fast with this problem. However, if we try to elaborate the procedure

always in this manner, even with not so difficult problems we cannot formu-

late the reason after deliberation and cannot find the procedure to determine

numbers. [41]Now the rule of element placement is a mysterious method to find12r

the procedure quickly, although its reason is hidden deeply. [42]It is not, how-

ever, to find [the solution] immediately without investigation. [43]Investigating

repeatedly mainly by the reason of multiplication, addition, and subtraction,

we obtain this equation.

[44] Series of operations to solve the problem [45]Place the celestial ele-

ment unit as the width

[ h]
. [46]Subtract this from the sum and make

the remainder the long side

[
H

]
. [47]Multiply the short side by it and

make this the area of the rectangle


h
H

. [48]Move this to the left.

[49]Place the area, which is canceled out by the number in the left, and
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obtain the equation

 Hh
H

. [50]Extract the square root from this and

obtain the width 12 bu. [51]Subtract this form the sum and obtain the

length 15 bu. ([52]We omit the main procedure.)

[53]The investigation of procedure by reasonable evidence is sometimes visible

and easy, and sometimes hidden and difficult. [54]If we use the rule of element

placement, we will always be able to find its subtlety. [55]Although its rules

and reasons are investigated in thousands of ways, it consists only of addi-

tion, subtraction and multiplication. [56]It should be called the greatest rule,12v
[57]which we admire stating its meaning.

[58]Master Seki Takakazu was my teacher. [59]Once he invented further true

and virtual numbers relying on the evidence of the rule of element placement and

formulated the Kai Fukudai no Hō (Method for Solving Concealed Problems);
[60]this should also be called a mysterious feat.

[61]If the above rule of element placement is to be investigated and understood with

reasonable evidence, it can be explained almost as in the preceding. But we cannot

say that it can be understood only by reasonable evidence, [62]nor can we say that

it can be understood only by numerical evidence. [63]There is not necessarily the

reasonable or numerical evidence; but it is marvelous that we understand it without

expectation and obtain it without noticing. [64]This understanding is completely the13r

same as that of those who understand by evidence; it is attained by one’s own native

straight character when the time of the truth becomes mature. [65]There are many

marvels besides the rule of element placement. [66]Without regards to shallow or

deep, easy or difficult, all the understanding is attained in the same way. [67]If one

is not given this straight character, even if he studies thoroughly all mathematics,

he cannot attain to perception of the truth.

III. Investigating the Rule of Reduction

[1]Suppose [we are] given 105 [parts] out of 168 parts. [2]Question: How

much is it if reduced?
[3]Answer: 5 [parts] out of 8 parts.

[4]Place [on the counting board] the denominator 168 and the numerator 105.

Take 2 as a divisor. ([5]Although the divisor 1 is the starting number, we do not

employ 1 because the denominator and the numerator do not change if they are

divided by 1.)13v

Incrementing the divisor stepwise by 1 until [we reach] the numerator, we ex-

amine divisibility taking these [incremental numbers] as divisors. It happens that
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neither the denominator nor the numerator are settled: ([6]the denominator and

the numerator are called not settled if they have decimal places of bu and ri after

division.) It may happen that the denominator is settled but the numerator is not

settled or that the numerator is settled but the denominator is not settled. In these

cases, we do not employ the divisor. [7]If both the denominator and the numerator

are settled, the divisor is kept. [8]In this problem, we keep the settling divisors 3,

7 and 21; [9]3 and 7 are prime numbers and these two numbers multiplied give the

main number 21. Therefore, we take 21 as the [greatest common] divisor, by which

we divide the denominator and the numerator.

[10]In this way, starting from the divisor 2 and incrementing it stepwise by 1,

we examine to find the cases where both the denominator and the numerator

are settled. After that, we investigate a simplified procedure. First, we remove14r

completely the denominator by the numerator, then we remove completely the

numerator by the remainder of the denominator, then we remove completely

the remainder of the denominator by the remainder of the numerator, and

then we remove completely the remainder of the numerator by the [second]

remainder of the denominator. In this way, we repeatedly remove completely

the remainders [of the denominator and of the numerator] by each other. If

we find the remainders of the denominator and of the numerator coincide, we

understand that it is the divisor [of reduction] and thus establish the rule of

reduction and the procedure of mutual removal. ([11]If, at the last stage of

removal, the remainder becomes empty, we stop at one step before to make

the remainders of the denominator and of the numerator equal, which divide

completely both the denominator and the numerator.)

[12] Main procedure to solve the problem [13]Place the denominator 168

and the numerator 105. [14]We remove completely the denominator by

the numerator; the remainder of the denominator is 63. [15]We remove

completely the numerator by the remainder of the denominator; the re-

mainder of the numerator is 42. [16]We remove completely the remainder14v

of the denominator by the remainder of the numerator; the second re-

mainder is 21. [17]We remove completely the remainder of the numerator

by the second remainder of the denominator; the second remainder of

the numerator is 21. [18]At this stage, the remainders of the denominator

and of the numerator coincide. [19]We take 21 as the divisor of reduction,
[20]by which we reduce the denominator and the numerator to determine

the reduced fraction.

[21]The reduction of fraction controls cumbersome fractions. [22]By this proce-

dure, which removes completely the denominator and the numerator mutually,
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we can investigate and determine the reduced factor in one step. [23]Generally

speaking, in all problems or in all procedures related to numbers, we cannot

escape from the reduction of fraction. [24]That is, in order to extend the proce-

dure [of reduction], although a variety of fractions are produced, according to

the meaning of a problem, all are based on the reduction and can be handled

by the procedure of mutual removal. [25]This [rule] looks very elementary but15r

is indeed very profound. [26]Therefore, by examples we explained its meaning.

[27]The rule of reduction and the procedure of mutual removal are very simple.

Although we rely on some bases if we try to understand the reason behind them, the

rule of reduction can be established thoroughly by numerical evidence, as reduction

is independent of articles’ names in the problem. Therefore, we regard it as an

investigation of rules by numerical evidence.

IV. Investigating the Rule of Finding Differences

[1]Suppose there is a quadrangular pile [2]with a base length of 19.
[3]Question: How much is the sum?
[4] Answer: 2470.

[5]When the base length of the quadrangular pile is 1, the sum is counted to be

1. [6]This is case 1. [7]Next, when the base length is 2, we count the sum and obtain

5. ([8]That is, we add 1 and 4.) [9]This is case 2. [10]Next, when the base length is 3,15v

we count the sum and obtain 14. ([11]That is, we add 1, 4 and 9.) [12]This is case 3.
[13]Next, when the base length is 4, we count the sum and obtain 30. ([14]That is, we

add 1, 4, 9 and 16. [15]Similar calculations for case 5 and onwards.) [16]This is case

4. [17]Next, when the base length is 5, we count the sum and obtain 55. [18]This is

case 5. [19]Next, when the base length is 6, we obtain the sum 91. [20]This is case

6. [21]Next, when the base length is 7, we obtain the sum 140. [22]This is case 7.

([23]The calculations for case 8 and onwards are similar.)

[24]The value of a sum is, originally, a kind of cubic accumulation. [25]Therefore,

if we take the differences of terms three times according to the base length, all

terms become equal to each other. This indicates that we should determine

the sum using the number of 2-multiplication accumulation of the base length.
[26]Thus, based upon this evidence we understand the rule of finding differences.16r

[27]At each case, we divide the sum by the base length. We call this the first definite

sum. [28] We obtain 1 for case 1, 21
2 for case 2, 42

3 for case 3, 71
2 for case 4, 11 for

case 5, 151
6 for case 6 and 20 for case 7. [29]We subtract the definite sum of each

case from that of the subsequent case and call it the definite sum difference of each
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case. [30]We obtain 11
2 for case 1, 21

6 for case 2, 25
6 for case 3, 31

2 for case 4, 41
6 for

case 5 and 45
6 for case 6.

[31]It seems that we should divide the definite sum difference by the base length.

But if we divide it by the base length, the number becomes uneven and not

equal to each other. [32]Therefore, we search and understand that the division

should be done by the difference between the base lengths of the case and the

subsequent case.

[33]In each case, we subtract the base length from that of the subsequent case and

call it the “square case difference divisor.” [34]For each case, we obtain 1, [35]by

which we divide the definite sum difference of each case and call this the square sum

for the case. [36]We obtain 11
2 for case 1, 21

6 for case 2, 25
6 for case 3, 31

2 for case

4, 41
6 for case 5 and 45

6 for case 6. [37]We subtract the square sum from that of the

subsequent case and call this the square sum difference. [38]We obtain 2
3 for case 1,

2
3 for case 2, 2

3 for case 3, 2
3 for case 4 and 2

3 for case 5.

[39]It seems that we should divide the square sum difference by the base length,

but if we divide it by the base length or by the difference between the base17r

length and that of the subsequent case, we find the numbers uneven and not

equal to each other. [40]Therefore, we search and understand that the division

should be done by the difference between the base length and that of the 2 cases

before. [41]Also, using this method, if we want to calculate the 3-multiplication

sum difference, we take the difference between the base length and that of

the 3 cases before as the 3-multiplication case difference divisor; if we want to

calculate the 4-multiplication sum difference, we take the difference between the

base length and that of the 4 cases before as the 4-multiplication case difference

divisor. [42]Further cases can be treated similarly. We understand that the case

difference divisor of higher order can be obtained step by step.

[43]In each case, we take the difference between the base length and that of the 2

cases before as the “cubic case difference divisor.” [44]For each case we obtain 2,
[45]by which we divide the square sum difference of each case and call this the cubic17v

sum of that case. [46]We obtain 1
3 for case 1, 1

3 for case 2, 1
3 for case 3, 1

3 for case 4

and 1
3 for case 5. The numbers being equal to each other, [47]we take 1

3 as the “cubic

difference.”
[48]We multiply the base length of each case by itself and multiply this by the

“cubic difference,” subtract this from the first definite sum, and call this the second

definite sum. [49]We obtain 2
3 for case 1, 11

6 for case 2, 12
3 for case 3, 21

6 for case 4, 22
3

for case 5, 31
6 for case 6 and 32

3 for case 7. [50]Consecutively we subtract the second

definite sum from that of the subsequent case and call this the [second] definite sum
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difference. [51] We obtain 1
2 for case 1, 1

2 for case 2, 1
2 for case 3, 1

2 for case 4, 1
2 for

case 5 and 1
2 for case 6. [52]It each case, we divide them by the square case difference

divisor and call them the [second] square sum of the case. [53]We obtain 1
2 for case

1, 1
2 for case 2, 1

2 for case 3, 1
2 for case 5 and 1

2 for case 6. The numbers being equal18r

to each other, [54]we take 1
2 as the square difference.

[55]We multiply the base length of each case by the square difference, subtract

the second definite sum of the case by this, and call it the third definite sum. [56]

We obtain 1
6 for case 1, 1

6 for case 2, 1
6 for case 3, 1

6 for case 4, 1
6 for case 5, 1

6 for

case 6 and 1
6 for case 7. The number being equal to each other, [57]we take 1

6 as

the “definite difference.” ([58]When we determine the cubic sum, the numbers at

each case become equal. Therefore, we only need to determine the three kinds of

numbers, those of the first, the second and the third cases. But, for the moment we

calculate seven kinds of numbers to show that they are equal in each case.)
[59]We reduce the three differences to a common denominator and obtain 2 for the

cubic difference, 3 for the square difference and 1 for the definite difference, [60]the

common denominator being 6.

18v
[61]It is difficult to search how to determine the square difference, cubic differ-

ence and furthermore if the differences of base lengths of each case are equal.
[62]Therefore, we search and understand the situation making the base lengths

uneven in different cases. [63]Also, it is hard to search how to determine the

positive or negative signs of the three differences by the numbers of the quad-

rangular pile. [64]Therefore, as in the calendrical calculation of the difference

of degrees in the movement of the sun and the moon, making the sum num-

bers larger or smaller we search and understand the rule of signature. [65]We

mention no further details.

[66] Main procedure to solve the problem [67]We double the base length,

add 3 to this, multiply this by the base length, add 1 to this, also, multiply

this by the base length, and divide this by 6; we obtain the sum.

[68]Knowing that the sum number corresponds to the 2-multiplication sum of

the base length, by this evidence we investigate the solution, comparing it with19r

the three kinds of numbers, namely, the base lengths, the square of the base

lengths and the 2-multiplication sum of the base lengths, and understand the

rule of [linear] equations. [69]This is equivalent to the following: we arrange

the base lengths for each case in one line, the square of the base lengths in the

line below, the 2-multiplication sum of the base lengths in the line below and

the sum numbers in the last line. Contracting this arrangement, we can find

the coefficients. ([70]Also, Master Seki created the general procedure of square

piles. [71]The procedure for the self-multiplication pile coincides naturally with
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the calculation of quadrangular piles.) [72]We omit these procedures.

[73]In the above [rule of] finding differences, we consider similar examples, calcu-

late numbers by decomposition, and understand the rule by numerical evidence.
[74]Generally speaking, we cannot obtain the rule or the procedure, which are under-

stood by numerical evidence, by discerning the reason completely. [75-76]Therefore,

we do not insist on seeking its reason and apply the procedure naturally with the

help of the rules: this is to conform ourselves to the Way of Mathematics.19v

[77]Generally speaking, among methods of investigation, some rely necessarily

on reasonable evidence, some rely necessarily on numerical evidence, and also

some rely on both. [78]He who investigates relying on reasonable evidence,

even though he does not search for numerical evidence, as long as he truly

endeavors with his whole heart, he will certainly attain understanding; [79]if he

masters the rule of element placement and employ it, he can overcome a lot of

difficulties and attains understanding with less effort. [80-81]He who investigates

relying on numerical evidence, even though he does not insist on discerning the

reason, as long as he determines numbers entirely and investigates them deeply,

he certainly will attain understanding. [82]As the methods of investigation,20r

which will increase or decrease at the extreme point of saturation or exhaustion,

consist of the determination of numerical examples by decomposing and by

slicing, according to the variation of the examples, either reasonable evidence or

numerical evidence can be investigated, and relying on these evidence the rules

or the procedures can be established in thousands of manners. [83]Certainly,

although it is possible to learn how to apply a procedure relying on rules,

it is rare to discern how to understand the rules recognizing the character.
[84]Therefore, it is taken easy to discern the reason from the heart and difficult

to determine numbers with the strength. [85]But, without distinguishing the two

ways of investigation, one relying on reasonable evidence and the other relying

on numerical evidence, he who insists on attaining complete understanding

by reasonable evidence in the investigation where he should rely on numerical

evidence, he encounters obstacles and cannot attain [such] understanding; [86]he20v

who insists to investigate by numerical evidence in the investigation in which he

should rely on reasonable evidence, he cannot exert himself fully and stagnate.
[87]But if he does not seek numbers, he should understand that it is because of

the [problem’s] character. [88]In this case, it is no use to continue thinking in vain

and paying further attention [to the problem]. [89]Therefore, now we explain

that it is fundamental to distinguish two paths of investigation of numbers,

one by reasonable evidence, the other by numerical evidence. The reader is

advised not to stray from the path of investigation.
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Four examples on the Reason of procedure

V. Investigating the Procedure of Repeated Exchanges of Weavers

[1]Suppose there are weavers. [2]3 weavers weave 4 tan of tapestry in 2121r

days. [3]Now 7 weavers weave in 45 days. [4]Question: How many tan of

tapestry are woven?
[5]Answer: 20 tan of tapestry.

[6]Place [on the counting board] 4 tan of tapestry as given at first. Divide this

by 3 weavers and we find that one weaver weaves 1 tan 33333 strong of tapestry in

21 days. [7]Divide this further by 21 days and we find that one weaver weaves 6 ri

34921 weak of tapestry [per day]. [8]Therefore, multiplying this by 45 days given

later, we find that one weaver weaves 2 tan 857143 strong of tapestry in 45 days.
[9]Multiplying this further by 7 weavers, we find that 7 weavers weave 20 tan of

tapestry in 45 days.

[10]Although the original procedure is as stated, after several repetition of divi-

sions we do not always return to a correct number when some numbers are not

“settled.” [11]Therefore, following the rule of multiplying first and dividing21v

later, we simplify the procedure.

[12] Main procedure to solve the problem [13]Place 4 tan, the first given

length of tapestry, [14]multiply this by the later given 7 weavers, and also

multiply this by 45 days. Place this in the Reality row. [15]Place the

first given 3 weavers, [16]multiply this by 21 days. Place this in the Norm

row. [17]Divide this [configuration] and we obtain the length of woven

tapestry.

[18,19]In the beginning, it is hard to understand why only one division is suffi-

cient if we multiply all multipliers to form the Reality row and if we multiply

all divisors to form the Norm row. [20]Only after we investigate in depth, de-

composing the reason of procedure for determining the number per unit, can

we formulate this procedure by putting together all multipliers and all divisors.

[21]In the above procedure of repeated exchanges of weavers, we decompose and

investigate the procedure by reasonable evidence; that is, by the procedure we es-22r

tablish the rule of exchange. [22]If we seek the reason according to the rule and

procedure, it cannot be clarified immediately. But originally this procedure was es-

tablished by reasonable evidence which we are searching for. Therefore, we classify

this [example] as the investigation of procedure by reasonable evidence.
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VI. Investigating the Procedure for Finding the Extreme Volume of
a Parallelepiped

[1]Suppose there is a parallelepiped. [2]The difference of the length and

width is 7 shaku and the sum of the width and height is 8 shaku. [3]We

want to make the volume as large as possible. [4]Question: How much are

the length, the width, the height and the extreme volume respectively?
[5]Answer: Width 4 and 2/3 shaku; length 11 and 2/3 shaku; height 3

and 1/3 shaku; volume 181 and 13/27 [cubic] shaku.

[6]We do not investigate by numerical evidence. [7]Immediately relying on reason

we investigate by the rule of element placement.22v

[8]Place the celestial element unit as the width

[ h]
. [9]Add the difference

to this and make this the length

[
D
]
. [10]And by the width we subtract

the sum and make this the height

[
S

H

]
. [11]Multiply the length, the

width, and the height, and make this the volume

h Reality

DS Square
HD S Side

H Corner

.

[12]We take this as the original formula and search for its meaning in [solution]

procedures. If the volume is given numerically in the problem, we cancel the

original formula by the value of the volume, which remains in the Reality row.
[13]Because the Square row will be extracted completely when the Reality row

becomes extremely large, we make the width, which we established first, as

the quotient and applying the rule of extraction of the quotient number to the

original formula we find the extreme case of the Square row and obtain the

equation by cancellation.23r

[14]We make the width the quotient

[ h]
. [15]Place the original Corner

row −1 and multiply it by the quotient and add the original Side row

to it and make it the first number to extract the Side row:

[
HD S

H

]
.

(We obtain a negative.) [16]Further multiply this by the quotient and

make this the first number which ought to extract the Square row (neg-
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ative)


h

HD S
H

. [17]Also, we place the original Corner row and multiply

this by the quotient, add this to the first number to extract the Side

row and make it the second number to extract the Side row (negative)[
HD S

H

]
. [18]Further, we multiply this by the quotient and make this

the second number which ought to extract the Square row (negative)
h

HD S
H

. [19]Add this to the first number which ought to extract the

Square row and make it the extreme case of the Square row (negative

number)


h

HD S
H

. [20]Move it to the left. [21]Place the original Side row

(positive number), and cancel it by what was moved to the left. ([22]In

the rule of extraction of the quotient [number], we use addition for same signatures

and subtraction for differing signatures. [23]Therefore, also in the cancellation, we

combine by addition same signatures and by subtraction differing signatures.) We

obtain the equation

DS Reality
HD S Square

H Side

.

23v
[24]In this problem, we should obtain the solution using numbers. But in order

to describe this procedure, we employ the names given in the problem.

[25] Main procedure to solve the problem [26]Place the sum. [27]By the

difference we multiply this and make this the Reality row (positive).
[28]Also, place the sum. By the difference we subtract it. Double the

remainder and make this the Square row (positive). [29]Make 3 the Side

row (negative). [30]Extracting the square root from it, we obtain the

width. [31]Adding the difference to it we obtain the length. [32]By the

width we subtract the sum and obtain the height. [33]Multiplying the

length, the width, and the height we obtain the volume. ([34]The obtained

width has the inexhaustible digit under the shaku. [35]Therefore, in the

original formula, we multiply the Reality row by 3, leave the Side row

unchanged, and divide the Side row by 3, and extracting the square root

from it we obtain 14. [36]Dividing it by 3 we obtain 4 and 2/3 shaku.)
[37]The above procedure for a parallelepiped is an example of an investigation

of a procedure by reasonable evidence. [38]If we seek the reason according to this

procedure, it is hidden and cannot be observed. But because we established this
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[procedure] discerning the reason by the rule of element placement, we recognize this

as an investigation of a procedure by reasonable evidence. [39]Generally speaking,24r

the rule and procedure are not always established by numerical evidence. [40]Even

if they are established with reasonable evidence, if we seek the reason according to

the rule and procedure, it may be hidden and cannot be observed. [41-42]In this

case, we do not try to discern the reason by force, entrusting the reason to the rule

and procedure, we simply follow the rule and procedure and employ them; this is to

conform ourselves to the Way of Mathematics.

[43]Once, someone asked me the procedure to find the extreme number of in-

crease and decrease in the calculation of the delay of lunar movement in the

Shoushili (Time Granting Calendar) using three differences, cubic, square, and

definite. [44]I did not discern the reason, [45]but decomposed example numbers

and could immediately search out the evidence to put 1 for the Reality row,

2 for the Square row, and 3 for the Side row and understood this procedure.

([46]We omit the obtained numbers.) [47]But later, when I changed the example

problem and asked for this extreme volume of the parallelepiped, I did not rec-24v

ognize the similarity of these problems. [48]Then relying on the rule of element

placement to discern the reason, I searched out the procedure immediately.
[49]Depending on the time and the problem, we choose following our intuition

reasonable evidence or numerical evidence [for our investigation]. [50]By this we

should realize that we attain the same understanding either through investiga-

tion by numerical evidence or through investigation by reasonable evidence.

VII. Investigating the Procedure of Arithmetic Removal

[1]We arrange 30 pebbles, ([2]half of which are black and the other half of which are

white,) alternately, and remove every tenth pebble repeatedly in the conforming or-

der. [3]We reach an arrangement, where there remains only one black pebble, having

removed the rest of the 14 black pebbles. [4]From here we start from the remain-25r

ing black pebble and remove every tenth pebble counting backward. ([5]Although

it amounts to the same thing removing [pebbles] in the conforming order, we tem-

porally follow the old tradition.) Finally, all white pebbles are removed and the

one black pebble remains. [6]For ages this game has been called the choice of the

step child. [7]Now we investigate and try to understand this procedure, looking for

different arrangements [that end with one black pebble.]
[8]We arrange pebbles ([9]all are white except for one black pebble) and examine

if the arrangement is appropriate or not. If we remove every second pebble, 1, 3,

7, 15, 31, etc. are the appropriate cases where the black pebble remains. [10]If we

remove every third pebble, 3, 5, 8, 30, etc. are the appropriate cases where [only]

the black pebble remains [at the end].
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[11]If we remove every fourth pebble, 1, 4, 8, 11, 15, etc. are the appropriate cases

where the black pebble remains. [12]If we remove every fifth pebble, 2, 5, 11, 14,

36, etc. are the appropriate cases where the black pebble remains. [13]If we remove

every sixth pebble, 1, 2, 7, 13, etc. are the appropriate cases. [14]After repeat-25v

ing several trials, we search and find that there are necessarily inappropriate cases
[15]and appropriate cases and [16]that an appropriate case may also be appropriate

or inappropriate [with a different removal number]. [17]Relying upon this evidence,

we understand the main procedure.
[18] Main procedure to find the cases [19]Place one rod ([20]representing

the black pebble) in the Norm row, [21]making the Reality row empty.
[22]Add 1 consecutively to the Norm row and the removal number to

the Reality row. If the Reality row becomes larger than the Norm row,

subtract the former by the latter. If the Reality row is exhausted, we

remove one rod ([23]representing the black pebble) from the Norm row

and find an appropriate case.

[24]The procedure of arithmetic removal was investigated and understood by

my elder brother Kata’akira. [25]Kata’akira’s native intelligence was close to

Takakazu [26]but his state of mind was so weak that he was sick for many days.
[27]Once he tried to apply the simplified procedure of the fifth side and found it

very complicated. [28]He said that, even though the solution involved numbers

with ten thousands digits, it would require only a hundred days if he calculated

one hundred digits in one day. Indeed, he finished all the calculation in about26r

one month. [29]After Kata’akira passed away, I remembered this episode and

admired his great achievement. [30]After less than ten days I calculated the

seed numbers for the table of the ecliptic and gave it to Nakane Jōemon. [31]I

was then fifty seven years old. [32]Also, when I was young, by a given mandate

I performed several steps of calculation to find the accumulated years from the

original date of the universe using the four astronomical data of the Xuanmingli.

After I completed the calculation, I thought that it required numbers with many

digits and was very difficult. [33]Now I am old and have lost half of my vigor but

with effort I can calculate numbers two times larger than what I could in my

earlier days. [34]Moreover I find no difficulty [in obtaining such results] because26v

Mathematics truly follows my heart. [35]Generally speaking, if one experiences

difficulty in determining numbers, in applying procedures, or in investigating

rules, it is because mathematics does not follow one’s heart and so one is not

attaining the truth. [36]Was it only Kata’akira who truly recognized the reality

that mathematics may or may not follow one’s heart? [37]It is the power by

which the soft smashes the hard and the small controls the large to stay calm

and to continue calculation without interruption, neither relying on one’s own

intelligence nor using one’s own physical power.
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[38]In the above [procedure of] arithmetic removal, making examples and investigat-

ing them by decomposition, we attain the understanding of the rule and procedure

by numerical evidence. [39]Although there is a reason in the basis, we dare not dis-27r

cern it to obtain [the procedure]. [40]Only by looking at what numbers are [obtained

in examples], can we orient our heart to this understanding by the numbers.

VIII. Investigating the Procedures for Finding the Surface Area of
a Sphere

[1]Suppose there is a sphere [2]with diameter 1 shaku. [3]Question: How

much is the surface area?
[4]Answer: The surface area is 314 [squared] sun 159265359 weak.

[5]We employ the procedure of whittling. ([6]We do not slice because slicing is not

conformable to the character [of the sphere].) First, we determine the volume of the

sphere of diameter 1 shaku 001 ri, remove the volume of the sphere of diameter 1

shaku from this, and obtain the real volume of the shell (1 sun 57236764672 strong).
[7]Divide this by the width of the shell (5 mō) and so obtain the surface area of

the shell (314 sun 473529344 strong). [8]Second, we determine the volume of the

sphere of diameter 1shaku 00001 shi, remove the volume of the sphere of diameter 1

shaku from this, and obtain the real volume of the shell (1 ri 57081203481 strong).27v
[9]Divide this by the width of the shell (5 kotsu) and so obtain the area of the shell

(314 sun 162406962 strong). [10]Thirdly, we determine the volume of the sphere

of diameter 1 shaku 0000001 bi, remove the volume of the sphere of diameter 1

shaku from this, and obtain the real volume of the shell (1 shi 57079648387 strong).
[11]Divide this by the width of the shell (5 sen) and so obtain the area of the shell

(314 sun 159296775 weak). [12]Thus, as the width of the shell becomes smaller, the

true number [for the surface area] appears gradually.

[13]Observing the surface areas of the three shells, relying on the procedure of

decremental divisor, we can obtain the true surface area of the sphere 314 sun

159265359 weak. Investigating this, we find the number for the circular ratio

appearing in the number for the [surface] area. [14]Therefore, we understand

that the circular ratio should be multiplied. Dividing the surface area by the28r

circular ratio, we find the quotient is exactly equal to the whole number 100.
[15]Investigating and understanding that it is the square of the diameter, we

establish the main procedure.

[16]Also, regarding the center of the sphere as the apex of a cone, the radius of the

sphere as the height of the cone and the volume of the sphere as the volume of the

cone, we multiply the volume by the conic divisor 3, and divide this by the height

of the cone to find the [base] area of the cone, which corresponds with the surface



SCIAMVS 13 Tetsujutsu Sankei 183

area of the sphere.

[17]Multiply twice the diameter of the sphere by itself, multiply this by the cir-

cular ratio, and divide this by 6 to obtain the volume of the sphere. [18] Multiply

this by the conic divisor 3, divide this by the radius of the sphere, and find the

surface area of the sphere. Therefore, to simplify this procedure, first omit one

[multiplication by the] diameter in the procedure for determining the volume

of the sphere, and also the division by 6. Finally, by this [simplified] procedure,28v

multiplying the diameter by itself and multiplying this by the circular ratio, we

obtain the surface area of the sphere immediately.

[19] Main procedure to solve the problem [20] Place the diameter of the

sphere, multiply it by itself, [21] multiply this by the rate of the circular

circumference, divide this by the rate of the diameter, and obtain the

surface area.

[22]Master Seki said that, in order to understand thousands of rules, it is most

essential to observe the form and to establish the path [of reasoning]. [23]His

hidden purpose was to understand the true procedure from the beginning with-

out any investigation. [24]Thus, in the latter procedure, he observed the form

of a sphere and considered it as a cone and its center as the apex. In this way,

observing the form and establishing the path [of reasoning], he understood the

true procedure immediately without any investigation. [25]Therefore, he con-

sidered the former procedure second-rate. [26]Because originally I am of foolish29r

character, if I want to understand, by reasonable evidence, the true rule only

by observation, although it may be very easy if we encounter a procedure like

this, which has a simple reason, I cannot always attain a solution when a given

procedure is not based on a simple reason. [27]In such a case, we investigate re-

peatedly, relying exclusively on numbers, to understand there is some evidence,

on which we can establish the true rule. [28]For this reason, I do not dare to

consider the former procedure second-rate. [29]Certainly, is it because of my

distorted character that it is difficult for me to understand without any inves-

tigation? [30]If I were straight in mind, without distinguishing numerical and

reasonable evidence, I would be able to understand everything immediately

without any investigation. [31]But because I am of distorted character, even

though I study deeply, I will not be able to attain such a state. [32]Generally29v

speaking, in the numerical quantity, in the reason of procedure, and in the rule

and law, everything is originally natural. [33]He who understands this does not

tread on a new path; [34]his path merges with the natural path to attain under-

standing. [35]If this is the case, it is also appropriate to attain understanding

after investigation. [36]I strongly recognize that Master Seki’s natural intelli-
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gence is without parallel in the world. [37]He always said that problems on

the circular area were very difficult to solve. [38]Alas, this is because he [chose

to] operate in a relaxed manner, [39]but I dare say that even problems on the

circular area can certainly be solved by tenacity. [40]This is only because I work

in a painstaking manner. [41]The reason why Master Seki said that he could

not solve this type of problem was that he operated in a relaxed manner to find

a quick and easy solution, endeavoring to solve problems immediately without

any investigation. [42]It was not because he could not solve them. [43]Perhaps,30r

he did not like to go into the matters thoroughly. [44]Because natively I am of

foolish character, I cannot reach a quick and easy solution operating in a re-

laxed manner. [45]I am confident in a way to be peaceful even operating always

in a painstaking manner. [46]Therefore, if I investigate [in this way], I know I

will surely obtain the solution. [47]Reflecting on this, I know that my native

character is one [part] out of ten less than that of Takakazu.

[48]In the above procedures for determining the [surface] area of a sphere, the former

consisted in the determination of numbers by whittling and in the investigation of

the procedure with this numerical evidence; [49]in the latter, without the determina-

tion of numbers and the investigation of procedure, [50]the reason was immediately30v

discerned and the procedure was also immediately obtained.
[51]Certainly, these procedures being compared, the investigation by numerical

evidence is complicated to apply but immediate to introduce; [52]the investigation

by reasonable evidence indicates the reason very easily but is subtle and difficult to

introduce. [53]Having proposed these two procedures I discussed their meaning and

proved that both turned out to be the same understanding.

Four Examples on the Numerical Quantity

IX. Investigating Numbers Stemming from Decomposition

[1]If we want to investigate by reasonable evidence, there is the rule of element

placement, which unifies all the procedures. [2]If we want to investigate by

numerical evidence, there is no way other than the procedure of decomposi-

tion. Furthermore, there is no definite rule, and processes to the solution differ

according to thousands of rules. [3]This means, the [procedure of] decompo-31r

sition is the basis of determining numbers and discerning reasons, the way of

investigation, and the method to find rules and procedures. [4]Therefore, if we

decompose according to the form and character and investigate deeply to deter-

mine numbers, we surely understand the rule and procedure. [5]In this manner,

we state its meaning and witness its importance.

[6]If he who decomposes the circumference of a circle cuts the diameter equally and
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horizontally into thin slices, seeks the [length of the] right and left oblique chords

cut by the horizontal lines and adds the oblique chords to seek the [approximate]

circular circumference, then the parts of the circumference are not equal even if

he cuts the diameter equally. [7]Therefore, if he seeks the circumference doubling

the sections of the diameter, these numbers being disobedient to the character, he31v

stagnates in determining the extreme number and never obtain the evidence to

understand the circle’s character. [8]Therefore, when he cuts the circumference into

the four angular form [i.e., by an inscribed square] and further doubling angles [i.e.,

forming an inscribed octagon, etc.], the circumference is cut into equal length and

the numbers are obedient to the character of the circumference. Therefore, doubling

the number of angles and seeking the angular circumferences at each step, by the

repeated application of the procedure of incremental divisor he can determine the

extreme number rapidly and obtain an evidence to understand the character of a

circle.
[9]He who decomposes the volume of a ball, slices the diameter of the ball equally

and makes each slice into the shape of a circular platform. Because the sum of the

widths of these slices is the sagitta of an arc, we can calculate the chord of the arc,

which we take as the diameters of the upper and the lower ends of the platform; the

width of the slice is the height of the platform. By the procedure to seek the volume

of a circular platform, one finds the volume of each slice and summing these slices32r

forms the cut out volume. ([10]If he omits the circle rates in seeking the volume of

a platform, he can obtain the volume of a square platform.) [11]Further, doubling

the number of slices and seeking the cut out volume at each step, investigating the

obtained numbers to determine the incremental divisors, according to the procedure,

we find the extreme number of the true volume. [12]Because this does not disobey

the reason of volume seeking, he does not stagnate in determining the extreme

number. But further investigating deeply, we find that the procedure to find the

volume of a platform seems good as a reason but the numbers do not converge well.
[13]Therefore, multiplying the sum of the square of the upper radius and the square

of the lower radius by the height, and halving this to form the volume of the tubular

slices and adding them up, we form the cut out volume of accumulated tubes. If,

doubling the number of slices and seeking the polyhedral volumes, we apply the

procedure of incremental divisor to determine the extreme number, we can find the

extreme number rapidly even with a very small number of slices. [14]Certainly, it is32v

not indeed the procedure to find the volume of a platform to find the volume of a

tabular slice. [15]This is a miraculous procedure in the decomposition of the volume

of a ball and follows the character of the decomposition of the volume of ball.

[16]In the decomposition of the circle and related objects, we seek total confor-

mance with the form and character [17]and never venture outside conformity

with them. [18]If we cut into slices what should be whittled into shells, we
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are disobedient. [19]When we cut according to the diameter what should be

cut according the circular circumference, we are disobedient. [20]When we cut

horizontally what we should cut vertically, we are disobedient. [21]When we do

not obey the form and character, even when we can find the true number, we

are slow in searching the extreme number and have difficulty in understanding33r

the reason of procedure. [22]In order to understand how to obey its form and

character, we first discern the reason, determine numbers, and then, relying on

the numbers, we investigate deeply and so attain understanding. [23]Therefore,

if we want to employ the [procedure of] decomposition, we should neither con-

centrate only in seeking the true number nor lose sight of the reason which

distinguishes obedience and disobedience.

[24]The above decomposition is the investigation of numbers by reasonable evidence.
[25]But once we start to investigate according to its form and character, we should

recognize that numbers are to be investigated by numerical evidence.

X. Investigating Numbers which are Square Roots

[1]Suppose there is a regular square of area 1166 [squared] bu. [2]Question:

How much is its square root?33v
[3]Answer: One side is 34 bu with remainder 10 [squared] bu.
[4] Main procedure to solve the problem [5]Place the area [of the regular

square] in the Reality [row] [6]and 1 in the Side row. [7]Apply the [gener-

alized] division to this [configuration] to extract a square root and obtain

the side of the square.
[8]We place the area in the Reality row and 1 in the Side row and moving over

orders we observe the first quotient is on the order of 10. ([9]We omit the manipula-

tion of moving over orders.) [10]If its first quotient is 10, then because of “one times

one makes one hundred” it is smaller than the Reality [row]. [11]If it is 20, then

because of “two times two makes four hundred” it is also smaller than the Reality

[row]. [12]If it is 30, then because of “three times three makes nine hundred” it is

again smaller than the Reality [row]. [13]If it is 40, then because of “four times four

makes thirteen hundred” [14]it is instead larger than the Reality [row]. [15]Therefore,

it is known to be 30 bu and something. We take 30 as the first quotient, multiply34r

the Side row by it, and place the product in the Square row. We multiply the Square

row by the first quotient and subtract 900 from the Reality row. The remainder 266

[squared] bu [is now in the Reality row]. [16]Also, we multiply the Side row by the

first quotient, add it to the Square row and obtain 60 bu in the Square row. [17]Now

seek the second quotient. If it is 1 bu, then 61 [squared] bu being subtracted from

the Reality [row], [we find] it is too small. [18]If it is 2 bu, then 124 [squared] bu

being subtracted from the Reality [row], it is also too small. [19]If it is 3 bu, then 189
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[squared] bu being subtracted from the Reality [row], it is also too small. [20]If it is

4 bu, then 256 [squared] bu being subtracted from the Reality [row], it is still too

small. [21]If it is 5 bu, then 325 [squared] bu being subtracted from the Reality row,

it is too large. [22]Therefore, it is known to be 4 bu and something. We take 4 bu34v

as the second quotient. Multiply the Side row by it, add the product to the Square

row, multiply the Square row by the second quotient 4 bu and subtract 256 [squared]

bu from the Reality row. The remainder 10 [squared] bu is now [in the Reality row].
[23]Repeating this investigation, we find the third and the fourth quotients and so

on.

[24]Although we start from the first quotient 10, make it larger and larger,

examine whether the root is smaller or larger, and finally know the definite

quotient to be 30, once we master the manipulation, we can observe immediately

the quotient to be 30 neither searching several cases nor relying on any rule.
[25]Also, as for the second quotient, although we start from 1 bu, make it larger

and larger, examine whether it is smaller or larger, and finally know the definite

quotient to be 4 bu, we can observe immediately the second quotient to be 4 bu,

establishing the rule of dividing the remainder in the Reality row by the Square35r

row. [26]Although we seem to know immediately without any investigation, in

truth, we do not know it immediately; [27]we investigate it in a single step. [28]A

novice cannot obtain the definite quotient from the beginning without several

cases of investigation. [29]Once he obtains the definite quotient by repeated

investigation, with matured manipulation, he understands how to know the

definite quotient at once.

[30]In the above [procedure of the] extraction of a square root, we establish the

procedure by reasonable evidence and then determine numbers by the procedure.
[31]Although it is hard to clarify the reason relying on the procedure of extraction

of a square root, because we establish the procedure by discerning the reason, we

classify the [procedure of the] extraction of a square root as the determination of

numbers by reasonable evidence.35v

XI. Investigating Numbers Related to the Circle

[1]Cutting a circle of diameter 1 shaku we form the quadrangle [inscribed square]

and determine the square of the cut out [i.e., inscribed polygon’s] perimeter. [2]Also,

cutting it again we form the octagonal and determine the square of the cut out

perimeter. [3]Also, cutting it again we form the 16-angle [regular polygon] and de-

termine the square of the cut out perimeter. [4]Also, cutting it further we form the

32-angle, also the 64-angle, and also the 128-angle. [5]Doubling the number of an-

gles, we determine the square of the cut out perimeters successively. Observing these
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numbers, we find, although the numbers are coming closer and closer to the true

number as the number of angles are doubled, they do not attain it. [6]Therefore,

subtracting the consecutive squares of cut out perimeters from each other, inves-

tigating the value attained by the successive quotients, we can elaborate the true

number by the procedure of incremental divisor. ([7]The procedures to determine

the square of the cut out perimeters and the numbers determined were described in

the Enritsu (Circle Rates) [8]and are omitted here.)

36r
[9]At the beginning Master Seki extracted the root from the square of the an-

gular [i.e. polygon’s] side to determine the angular side and employed the cut

out [polygon’s] perimeter [to approximate the perimeter of the circle]. [10]Now

we determine the square of the cut out perimeter by means of the square of

the angular sides, thus skipping the task of root extraction. [11]It is not from

the beginning that we discern we have only to employ the squared numbers.
[12]First we employed the cut out perimeter and then with deep investigation

we understood we could employ the squared numbers.

[13]Starting from the quadrangle, we subtract the square of the cut out perimeter

from the following one, and call the remainder the first difference. [14]Dividing

the difference by the preceding one, we investigate and understand that the ratios of

consecutive discrepancies tend to 1/4. [15]Therefore, by the procedure of incremental

divisor, we divide the first difference by 3, which is the denominator minus 1, and add

it to the square of the cut out perimeter, to make the square of the first approximate

circumference.36v
[16]Starting from the [regular inscribed] octagon we subtract the square of the

first approximate circumference from the following one, and call the remainder the

second difference. [17]Dividing the difference by the preceding one, we investigate and

understand that the ratios of consecutive discrepancies tend to 1/16. [18]Therefore,

by the procedure of incremental divisor, we divide the second difference by 15,

which is the denominator minus 1, and add it to the square of the first approximate

circumference, to make the square of the second approximate circumference.
[19]Starting from the 16-angle [regular inscribed polygon] we subtract the square

of the second approximate circumference from the following one, and call the re-

mainder the third difference. [20]Dividing the difference by the preceding one we

investigate and understand that the ratios of consecutive discrepancies tend to 1/64.
[21]Therefore, by the procedure of incremental divisor we determine the square of the

third approximate circumference. [22]When we determine the square of the fourth

approximate circumference, the incremental divisor is 1/256. For the fifth approxi-37r

mation, the divisor is 1/1024. [23]In this way, we investigate and understand that the

denominator of the incremental divisors are of the repeated power of 4. By applying

repeatedly the procedure of incremental divisor to the square of the approximate
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circumference we determine the square of the definite circumference. ([24]The num-

bers [in this procedure] of incremental divisor are recorded in the Enritsu [25]and

are omitted here.)

[26]At the beginning, Master Seki recognized how to determine the definite cir-

cumference by the procedure of incremental divisor, but applied it only once.
[27]Therefore, by determining the cut out perimeter of up to a 131072-angle

[regular inscribed polygon] he could elaborate the true number to fifteen or six-

teen digits. [28]Now we investigate and understand that by repeated application

of the procedure of incremental divisor, determining the square of the cut out

perimeter of up to the 1024-angle [regular inscribed polygon], we elaborate the

true number by a little more than 40 digits. [29]Also in this case, we could not

discern from the beginning that we should apply repeatedly the [procedure of]

incremental divisors. [30]After employing the [procedure of] incremental divisor37v

one time, with deep investigation, we understood that we should repeat the

application.

[31]By the procedures of decomposition and of incremental divisor we can determine

the definite circumference:

3 shaku 1 sun 4159265358979323846264338327950288419712 strong

By the procedure of residual division we form the rates of the circumference and of

the diameter.
[32]Now put the original number 1 shaku, [33]by which we divide the definite cir-

cumference to get the first quotient and the first inexhaustible. ([34]Always divide

the large number by the small.) [35]Divide the original number 1 by the first in-

exhaustible to get the second quotient and the second inexhaustible. [36]Divide the

first inexhaustible by the second inexhaustible to get the third quotient and the third38r

inexhaustible. [37]Divide the second inexhaustible by the third inexhaustible to get

the fourth quotient and the fourth inexhaustible. [38]Divide the third inexhaustible

by the fourth inexhaustible to get the fifth quotient and the fifth inexhaustible. [39]In

this way, dividing the inexhaustible of the preceding step by the inexhaustible of the

present step, we determine the quotients consecutively.
[40]Let the original number 1 be the rate of the diameter and let the first quotient

be the rate of the circumference. [41]These rates are called the first weak rates. [42]By

the second quotient multiply the first rates of the diameter and of the circumference

respectively, and add the original number 1 to the rate of the circumference, to

make the second strong rates. [43]By the third quotient multiply the second rates

of the diameter and of the circumference respectively, and add the first rates of the

diameter and of the circumference to the said rates respectively, to make the third

weak rates. [44]By the fourth quotient multiply the third rates of the diameter and of



190 M. Morimoto and T. Ogawa SCIAMVS 13

the circumference respectively, and add the second rates of the diameter and of the

circumference to the said rates respectively, to make the fourth strong rates. [45]In38v

this way, multiplying the rates of the diameter and of the circumference of the said

step by the quotients of the following step and adding the rates of the diameter and

of the circumference of the preceding step to the rates of the said step, we determine

the rates of the following step. They become strong and weak alternatively and

are convergent. ([46]The rates [obtained by the procedure] of residual division are

recorded in the Enritsu [47]and are thus omitted here.)

[48]At the beginning when Master Seki employed the procedure of residual di-

vision, he added 1 repeatedly to the diameter and 3 to the circumference re-

spectively to form the rates of the diameter and of the circumference, and at

every step divided the rate of the circumference by that of the diameter. If the

obtained number is smaller than the definite circumference, he added 1 to the

diameter and 4 to the circumference respectively. [49]Kata’akira, having found

this procedure too complicated, investigated and established this procedure.
[50]It is also not from the beginning that he discerned this procedure. [51]After

using the procedure to determine [numbers] one by one, with deep investigation

he understood the true rule.39r
[52]Although the true procedure of residual division is in this way, we do

not look for the exhaustive elaboration of the exact number in a case such as

calculation of the denominator of the fractional part of a day’s length from the

fractional part of a lunar month in calendar making; [53]we only need to decide

the values in the order of byō.[54]Therefore, we only use the first strong ratio and

the second weak ratio, or the second weak ratio and the third strong ratio, or

the third strong ratio and the fourth weak ratio. We add them successively to

determine the several ratios with not so big numbers and use them conveniently.
[55]Generally speaking, in calendar calculation there is another set of rules.

[56]We should know it. [57]For example, when we establish a procedure, if we set

up a rule according to the truth, it may be so difficult that we cannot apply it for

calculation. [58]Therefore, we consider the necessary accuracy of the true num-

ber to be determined and we investigate and set up a simple provisory procedure

and employ it. [59]In the determination of numbers, we do not need to elaborate

the exact number of great accuracy by the true procedure. [60]Considering the39v

order of accuracy we set up the provisory procedure, by which we determine

numbers of necessary accuracy and use them. [61]It is the same for numbers [ob-

tained by the procedure] of residual division. [62]Sometimes we use intermediate

ratios instead of true rates.
[63]In the Sui Shu (History of the Sui dynasty), [there is the following state-

ments]: In the Jiu Shu (Nine Numbers) from antiquity, the rate of

the circular circumference was 3 and the rate of the diameter was 1;
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[64]the procedure is crude. [65]People like Liu Xin, Zhang Heng, Liu

Hui, Wang Fan, and Pi Yanzong, each proposed new rates, [66]which

had not yet reached conformance. [67]In the Song Kingdom, Zu

Chongzhi, an officer at South Xuzhou, started a more exact rule:
[68]He supposes the diameter of a circle one hundred million to be 1

jō. The upper bound of the circular circumference is 3 jō 1 shaku 4

sun 1 bu 5 ri 9 mō 2 byō 7 kotsu; the lower bound is 3 jō 1 shaku40r

4 sun 1 bu 5 ri 9 mō 2 byō 6 kotsu. [69]The right number is be-

tween the upper and the lower bounds. [70]The exact rates are 113

for the circular diameter and 355 for the circular circumference. The

reduced rates are 7 for the circular diameter and 22 for the circular

circumference.
[71]In old days, Master Seki determined the definite circumference by decom-

posing the circle and formed the rates of the circumference and of the diameter

by the procedure of residual division. [72]After more than twenty years, when

I first looked at the Sui Zhi (Monograph on Calendar in the book of the Sui

dynasty) and found that the number of the circumference and the [two] rates

happened to coincide. [73]Alas, how great were Master Zu and Master Seki!

Although living in different countries and in different ages, they attained the

same truth looking for the true numbers. How marvelous it is!

[74]In the above investigation of the circular numbers, the determination of the square

of the cut out perimeter by the procedure of decomposition is the investigation of

numbers by reasonable evidence; [75]the determination of the limit number by repeat-40v

ing the procedure of incremental divisor is the investigation of numbers by numerical

evidence; [76]the determination of the rates by the rule of residual division is also

the investigation of numbers by numerical evidence. [77]Although the procedure of

incremental divisor and the rule of residual division are a procedure and a rule re-

spectively, which were originally established by investigation by numerical evidence,

we regard all [of this chapter] as the investigation of numbers by numerical evidence.

XII. Investigating Numbers Related to the Arc

[1]In the search of the form and character of the back arc, the true number is hidden

if it is close to the half circle and the true number appears if it is close to the side.
[2]If it is close to the half circle, it belongs to the latitude and its curve is rapid; [3]if

it is close to the side, it belongs to the longitude and its curve is slow. [4]Therefore,

taking the sagitta to be extremely small, we should search for the number and seek41r

the procedure.

[5]At the beginning, assuming the diameter to be 1 shaku and the sagitta to be 1
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sun, 2 sun, 3 sun, or 4 sun we searched for the definite back arc by procedures of

decomposition and of incremental divisor. Further, we continued to determine

the definite back arc for the sagitta of 4 sun 5 bu, 4 sun 9 bu, etc. We examined

these numbers but could not find any evidence when the back arc is close to the

half circle. [6]Therefore, although Master Seki formed and revised the rate of

the back arc twice and I [myself] also formed and revised it once, we abandoned

these procedures because all the formulas were not accurate. [7]Relying on the

fact that the square of the half back arc for a 1 sun sagitta is 10 sun 3 strong

and that that for a 1 bu sagitta is 1 sun 0033 strong, discerning in advance that

the true number will appear if the sagitta is extremely small, we determined

the definite number of the square of the half back arc taking the sagitta to be

1 kotsu and searched and understood its character.41v

[8]Cutting an arc with sagitta 1 kotsu we form two sides. Next cutting them again

we form 4 sides, cutting them again we form 8 sides, and cutting them again we

form 16 sides. [9]In this way, doubling the number of sides, we determine each of

the squares of the cut out half back arcs and then by the procedure of repeated

incremental divisor we obtain the square of the definite half back arc

1 shi 0000003333335111112253969066667282347769479595875 strong

([10]The rules of decomposition and of incremental divisor are the same as for the

determination of the square of the circular circumference. [11]Hereafter we determine

the squares of the bisected half back arcs up to 64 sides, and we elaborate the true

number of about 50 orders by the procedure of incremental divisor. [12]We omit

these numbers for the bisected half back arc.)

[13]If the sagitta is 1 sun, the square of the half back arc is of order 10 sun;

if the sagitta is 1 bu, then the square of the half back arc is of order 1 sun;42r

if the sagitta is 1 kotsu, then the square of the half back arc is of order 1

shi. Therefore, we search and understand that the number of the base is the

product of the sagitta and the diameter. [14]This coincides with the squares of

the bisected chords.

[15]Multiply the sagitta and the diameter. The number obtained is called the square

of the approximate half back arc, [16]which we subtract from the square of the definite

half back arc; call the remainder the first definite difference.

[17]Observing that the order of the first definite difference is 7 less than that of

the square of the half back arc, we find that we should determine the number

of the order of the square of the sagitta. [18]Now we divide the first definite
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difference by the square of the sagitta and obtain 3 bu 33333511111. [19]By the

procedure of residual division we search and obtain the extreme value 1/3.42v
[20]It corresponds with the old method where the square of the sagitta mul-

tiplied by the rate 5.8696 strong is added to the square of the chord to find the

square of the back arc. [21]From old time, people did not observe the divisor

1/3. [22]Because they were looking for the formula which is exact for the half

circle, they employed the multiplicative rate of the square of the sagitta.

[23]Self-multiply the sagitta and divide it by 3. The number obtained is called the

first approximate difference, [24]which we subtract from the first definite difference;

call the remainder the second definite difference.

[25]Observing that the order of the second definite difference is 6 less than that of

the first approximate difference, we find that we should determine the second

difference multiplying the second approximate difference by the sagitta and

dividing it by the diameter. [26]Now we divide the second definite difference by

the first approximate difference multiplied by the sagitta and divided by the

diameter, and obtain 5 bu 33333676191 weak. [27]By the procedure of residual43r

division we search and obtain the extreme value 8/15.

[28]Place the first approximate difference [at the position], multiply it by the sagitta,

divide it by the diameter, also multiply it by 8, and divide it by 15. The number

obtained is called the second approximate difference, [29]which we subtract from the

second definite difference; call the remainder the third definite difference.

[30]Observing that the order of the third definite difference is 6 less than that

of the second approximate difference, we find that we should determine the

third difference multiplying the second approximate difference by the sagitta

and dividing it by the diameter. [31]Now we divide the third definite difference

by the second approximate difference multiplied by the sagitta and divided by

the diameter and obtain 6 bu 428576 slightly strong. [32]By the procedure of

residual division we search and obtain the extreme value 9/14.43v

[33]Place the second approximate difference [at the position], multiply it by the

sagitta, divide it by the diameter, also multiply it by 9, and divide it by 14. The

number obtained is called the third approximate difference, [34]which we subtract

from the third definite difference; call the remainder the fourth definite difference.

[35]Observing that the order of the fourth definite difference is 7 less than that

of the third approximate difference, we find that we should determine the fourth
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difference multiplying the third approximate difference by the sagitta and di-

viding it by the diameter. [36]Now we divide the fourth definite difference by

the third approximate difference multiplied by the sagitta and divided by the

diameter, and obtain 7 bu 11111649832 strong. [37]By the procedure of residual

division we search and obtain the extreme value 32/45.

44r
[38]Place the third approximate difference [at the position], multiply it by the sagitta,

divide it by the diameter, also multiply it by 32, and divide it by 45. The number

obtained is called the fourth approximate difference, [39]which we subtract from the

fourth definite difference; call the remainder the fifth definite difference.

[40]Observing the order of the fifth definite difference is 6 less than that of

the fourth approximate difference, we find that we should determine the fifth

difference multiplying the fourth approximate difference by the sagitta and

dividing it by the diameter. [41]Now we divide the fifth definite difference by

the fourth approximate difference multiplied by the sagitta and divided by the

diameter, and obtain 7 bu 57576356977 weak. [42]By the procedure of residual

division we search and obtain the extreme value 25/33.

[43]Place the fourth approximate difference [at the position], multiply it by the

sagitta, divide it by the diameter, also multiply it by 25, and divide it by 33. The44v

number obtained is called the fifth approximate difference, [44] which we subtract

from the fifth definite difference; call the remainder the sixth definite difference.

[45]Observing the order of the sixth definite difference is 6 less than that of the

fifth approximate difference, we find that we should determine the sixth differ-

ence multiplying the fifth approximate difference by the sagitta and dividing

it by the diameter. [46]Now we divide the sixth definite difference by the fifth

approximate difference multiplied by the sagitta and divided by the diameter,

and obtain 7 bu 91209437363 strong. [47]By the procedure of residual division

we search and obtain the extreme value 72/91.

[48]Place the fifth approximate difference [at the position], multiply it by the sagitta,

divide it by the diameter, also multiply it by 72, and divide it by 91. The number

obtained is called the sixth approximate difference. ([49]We omit how to determine

the seventh and further differences.)
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[50]

Square of the definite half back
1 shi 0000 00333 33351 11112 25396

90666 67282 34776 94795 95875 strong

Square of the approximate half back 1 shi

First definite difference
0 shi 0000 00333 33351 11112 25396

90666 67282 34776 94795 95875 strong

First approximate difference
0 shi 0000 00333 33333 33333 33333

33333 33333 33333 33333 33333 strong

Second definite difference
0 shi 0000 00000 00017 77778 92063

57333 33949 01443 61462 62542 strong

Second approximate difference
0 shi 0000 00000 00017 77777 77777

77777 77777 77777 77777 77778 weak

Third definite difference
0 shi 0000 00000 00000 00001 14285

79555 56171 23665 83684 84764 strong

Third approximate difference
0 shi 0000 00000 00000 00001 14285

71428 57142 85714 28571 42857 strong

Fourth definite difference
0 shi 0000 00000 00000 00000 00000

08126 99028 37951 55113 41907 strong

Fourth approximate difference
0 shi 0000 00000 00000 00000 00000

08126 98412 69841 26984 12698 strong

Fifth definite difference
0 shi 0000 00000 00000 00000 00000

00000 00615 68110 28129 29209 weak

Fifth approximate difference
0 shi 0000 00000 00000 00000 00000

00000 00615 68061 56806 15681 weak

Sixth definite difference
0 shi 0000 00000 00000 00000 00000

00000 00000 00048 71323 13528 strong

Sixth approximate difference
0 shi 0000 00000 00000 00000 00000

00000 00000 00048 71319 15703 strong

45r

[51]This original procedure runs as follows: Multiply the sagitta and45v

the diameter to make the square of the approximate half back arc. [52]Self-

multiply the sagitta, divide it by 3, to make the first difference. [53]Place

the first difference, multiply it by the sagitta, divide it by the diameter,

also multiply it by 8, and divide it by 15, to make the second difference.
[54]Place the second difference, multiply it by the sagitta, divide it by

the diameter, also multiply it by 9, and divide it by 14, to make the

third difference. [55]Place the third difference, multiply it by the sagitta,

divide it by the diameter, also, multiply it by 32, and divide it by 45,

to make the fourth difference. [56]Place the fourth difference, multiply

it by the sagitta, divide it by the diameter, also multiply it by 24, and

divide it by 33, to make the fifth difference. [57]Place the fifth difference,
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multiply it by the sagitta, divide it by the diameter, also multiply it by

72, and divide it by 91, to make the sixth difference. ([58]The seventh

and further differences can be determined similarly.) [59]We add the46r

differences repeatedly to the square of the approximate half back arc, to

make the square of the definite half back arc.

[60]Applying this procedure to the half circle, the sagitta being large, we find

two orders by using two differences, three orders by using three differences, four

orders by using four differences, [61]and one more order by one more difference.
[62]That is, this coincides with Master Seki’s 4-multiplication procedure of find-

ing the back arc. [63]But he did not understand that the natural number should

be searched and sought by means of the back arc close to the side. [64]Only

requiring it to be exact for the half circle, he formed the rate and abandoned

it because it was not precise, without knowing only 4 orders could be obtained

with 4-multiplication.

[65]In the procedure, observing the multipliers and divisors to determine successive46v

differences, we search and understand that the multipliers at each steps are the

square of the seed, which is 1 for the first step and incremented by 1 at each later

step ([66]2 for the second, 3 for the third, 4 for the fourth), directly for the odd steps

([67]which are the first, third, fifth and further differences), and doubled for the even

steps ([68]which are the second, fourth, sixth, and further differences).
[69]Similarly, we search and understand that the divisors are the products of the

left seed, which is 3 for the first difference, and incremented by 2 at each later step

([70]5 for the second, 7 for the third, 9 for the fifth, and so on), and the right seed,

which is 1 for the first difference, and incremented by 1 for the odd steps ([71]2 for

the third, 3 for the fifth, 4 for the seventh and so on), and 3 for the second difference

and incremented by 2 for the even steps ([72]5 for the fourth, 7 for the sixth, 9 for

the eighth and so on).

47r
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[73]

difference step multiplier divisor

1 odd 1
seed 1

square
3

left seed 3

right seed 1
multiplied

2 even 8
seed 2

2 square
15

left seed 5

right seed 3
multiplied

3 odd 9
seed 3

square
14

left seed 7

right seed 2
multiplied

4 even 32
seed 4

2 square
45

left seed 9

right seed 5
multiplied

5 odd 25
seed 5

square
33

left seed 11

right seed 3
multiplied

6 even 72
seed 6

2 square
91

left seed 13

right seed 7
multiplied

7 odd 49
seed 7

square
60

left seed 15

right seed 4
multiplied

8 even 128
seed 8

2 square
153

left seed 17

right seed 9
multiplied

9 odd 81
seed 9

square
95

left seed 19

right seed 5
multiplied

10 even 200
seed 10

2 square
231

left seed 21

right seed 11
multiplied

[74]When, using the multipliers and divisors given in the previous paragraph, we47v

determine by adding successively differences as in the original procedure, we ob-

tain directly the true number without employing the decomposition, the square of

the half back arc. [75]Therefore, it [the procedure] exhausts the natural charac-

ter of the back arc. [76]We should understand [the theory] [77]that the character

of an arc and circle is inexhaustible, [78]and that, consequently, the corresponding

procedure must be also determined inexhaustibly. [79]Certainly, some numbers are

exhaustible and others are inexhaustible; [80]some procedures are exhaustible and

others are inexhaustible; [81]some characters are exhaustible and others are inex-

haustible. [82]Numbers like 1/4 and 1/5 are exhaustible; [83]numbers like 1/3 and

1/7 are inexhaustible. [84]Procedures like addition, subtraction, and multiplication

are exhaustible; [85]procedures like division and root extraction are inexhaustible.
[86]The character of the circumference of a square and of the area of a rectangle

is exhaustible; [87]the character of the circumference of a circle and of the area of

an arc [sector] is inexhaustible. [88]That is, the circle and arc are of inexhaustible48r

character, the procedure to handle them is also inexhaustible; the procedures being

inexhaustible, the numbers are also inexhaustible. [89]But many people do not rec-

ognize the character, supposing it is exhaustible, they investigate with exhaustible

procedures similar to finding the hypotenuse of a right triangle and the volume of a
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cone. [90]How can they [expect to] obtain the answer?

[91]The original procedure is a natural method which follows the character of the

arc. [92]If we seek the square of the half back arc for an extremely small sagitta,

the successive differences decrease more rapidly and the truer number can be

achieved quickly. But if the sagitta is getting larger in the case of a half circle,

the successive differences decrease slowly and more and more differences must

be calculated. [93]In this case, many multipliers are required and the procedure48v

is not easy. [94]It cannot be considered as the definite rate. [95]Therefore, we

search and seek a simplified procedure by arranging divisors. Multiplying the

first difference by the sagitta repeatedly and dividing it by the difference of the

diameter and the sagitta we seek the second difference above. But the decrease

[of differences] is not yet rapid. [96]We must also investigate more deeply. By the

remainder of subtraction of the sagitta multiplied by a rate from the diameter

we tried and divided differences repeatedly; we find the decrease is abruptly

rapid. [97]Therefore, we take this as the fundamental procedure of the definite

rate. [98]Although the procedure which uses repeated division by the difference

of the sagitta and the diameter would not be employed, we describe it as one

step of the ladder of investigation.

[99]To search the differences49r

by the division of the difference of the diameter and the sagitta.

[100]The beginning of the procedure. Multiply the sagitta and the

diameter, to make the square of the approximate half back arc. [101]Self-

multiply the sagitta and divide it by 3, to make the additive first differ-

ence. [102]Place the first difference, multiply it by the sagitta, divide it

by the difference of the sagitta and the diameter, also multiply it by 8,

and divide it by 15, to make the additive second difference. [103]Place the

second difference, multiply it by the sagitta, divide it by the difference of

the sagitta and the diameter, also multiply it by 5, and divide it by 14,

to make the subtractive third difference. [104]Place the third difference,

multiply it by the sagitta, divide it by the difference of the sagitta and

the diameter, also multiply it by 12, and divide it by 25, to make the

additive fourth difference. [105]Place the fourth difference, multiply it by

the sagitta, divide it by the difference of the sagitta and the diameter,

also multiply it by 223, and divide it by 398, to make the subtractive

fifth difference. ([106]The sixth and further differences can be determined

similarly.) [107]Place the square of the approximate half back arc, add or

subtract the differences accordingly, to make the square of the definite

half back arc. ([108] We omit the numbers thus sought.)
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[109]Applying this procedure to the half circle, the sagitta being large, we find

3 orders by using two differences, 4 orders by using 3 differences, 4 orders by

using three differences, and 5 orders by using 4 differences. [110]We find one49v

order more if we use one more difference. [111]That is, this coincides with the 6-

multiplication original procedure of finding the back arc, which I [myself] estab-

lished earlier. [112]Originally, expecting to find 7 orders using 6-multiplication

we established the method, which turned out not to be accurate even using

multi-multiplication. [113]Therefore, also we did not employ that procedure

and abandoned it.
[114]In an old method, multiplying the sagitta by itself, multiply by the

norm of the square of the sagitta, add it to the square of the approximate back

arc. [115]Subtract the double of the sagitta from the diameter. Multiply the

remainder by the square of the sagitta, divide it by the difference of the sagitta

and the diameter and halve it. Subtract the obtained number from the square

of the approximate back arc and call it the square of the definite back arc. This

old procedure corresponds naturally to the previous main procedure with two

differences.

[116]To search the use of the higher power of the sagitta in the division.50r

[117]Multiply the sagitta and the diameter and make it the square of the approx-

imate half back arc, [118]which we subtract from the square of the definite half back

arc; call the remainder the first definite difference.
[119]Self-multiply the sagitta and divide it by 3, to make the first approximate

difference, [120]which we subtract from the first definite difference; call the positive

remainder the second definite difference. ([121]The procedure of the preceding search

is the same as before.)

[122]Observing the order of the second definite difference is 6 less than that of

the first approximate difference, we find that we should determine the second

difference multiplying the second approximate difference by the sagitta and

dividing it by the diameter. [123]Now we divide the second definite difference by

the first approximate difference multiplied by the sagitta and by the diameter.

We obtain 5 bu 33333676191 weak. [124]By the procedure of residual division

we search and find the extreme value 8/15. [125]At this step it is not accurate50v

if we seek the second approximate difference multiplying the first approximate

difference by the sagitta and dividing it by the diameter. [126]Even if we divide

it by the difference of the sagitta and the diameter, we cannot obtain the desired

accuracy. [127]Therefore, we search whether it will be accurate if the division

is by the difference of the sagitta multiplied by a coefficient and the diameter.

Now we multiply the first approximate difference by the sagitta, also multiply
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it by 8, divide it by 15, and divide it by the second definite difference. Subtract

the obtained number from the diameter and find the negative remainder 6 bi

4285718673 strong. Divide it by the sagitta, and obtain the negative number

6 bu 4285718673 strong, [128]which is called the approximate coefficient (to be

subtracted) of the sagitta. [129]By the procedure of residual division we search

and find the extreme value 9/14.

[130]Place the first approximate difference [at the position], multiply it by the sagitta.

The result is placed in the Reality row. [131]Place the sagitta [at the position], mul-

tiply it by 9 and divide it by 14. Subtract the obtained number from the diameter.51r

The remainder is placed in the Square row. Divide the Reality row by the Square

row. Also, multiply the quotient by 8 and divide it by 15. The result is called the

second approximate difference of 2-multiplication, [132]which we subtract from the

second definite difference; the obtained positive remainder is called the third definite

difference.

[133]Observing that the order of the third definite difference is 14 less than

that of the second approximate difference, we find that the third difference

should be obtained by the second approximate difference multiplied by the

square of the sagitta divided by the square of the diameter. Now we divide the

third definite difference by the second approximate difference multiplied by the

square of the sagitta and divided by the square of the diameter. We obtain

4 ri 38776034632 strong. [134]By the procedure of residual division we search

and find the extreme value 43/980. [135]At this step it is not accurate if we

seek the third difference multiplying the second approximate difference by the

square of the sagitta divided by the square of the diameter. [136]Also, it is no51v

more accurate if we divide it by the square of the difference of the sagitta and

the diameter [instead of the square of the diameter]. [137]Further investigation

shows that it will be accurate if the division is by the square of the diameter

adjusted by the product of the sagitta and the diameter and the square of the

sagitta multiplied by some coefficients by addition or subtraction. [138]Now we

multiply the second approximate difference by the square of the sagitta, also

multiply it by 43 and divide it by 980. We divide the obtained number by

the third definite difference and subtract the square of the diameter from it.

The negative remainder is 1 shi 1952076352824992496 strong and is called the

numerator of the product coefficient. [139]Because this is 6 digits lower from

the top digit of the square of the diameter, we understand that we should use

the product of the sagitta and the diameter. [140]Now we divide the numerator

by the product of the sagitta and the diameter, obtain 1.19520763528499249652r

strong, [141]which is called the approximate coefficient (to be subtracted) of

the product of the sagitta and the diameter. [142]By the procedure of residual
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division we search and find the extreme value 1696/1419. [143] Also, multiply

the sagitta by the diameter, then multiply it by 1696 and divide it by 1419.

Subtract the obtained number from the numerator of the product coefficient

and obtain the positive remainder 2 byō 575998122373 strong. [144]Because

this is 13 digits lower from the top digit of the square of the diameter, we

understand that we should use the square of the sagitta. [145]We divide it by

the square of the sagitta and obtain 2 bu 575998122373 strong, [146]which is

called the approximate coefficient (to be added) of the square of the sagitta.
[147]By the procedure of residual division we search and find the extreme value52v

6743008/26176293. ([148]To search and seek the coefficient of the square of the

sagitta, the sagitta still being large, the true number is hidden. [149]Therefore,

with the sagitta 1 jin seeking the square of the half back arc in 90 digits I

succeeded to search out the coefficient in detail. [150]The obtained numbers are

so complicated that we omit them.)

[151]Place the second approximate difference [at the position], multiply it by the

square of the sagitta and place it in the Reality row [of a counting board]. [152]Self-

multiply the sagitta, multiply it by 6743008, divide it by 26176293, add the square

of the diameter to it, subtract from it the product of the sagitta and the diameter,

multiply it by 1696 and divide it by 1419. Place the remainder in the Normal row,

by which divide the Reality row, also multiply it by 43, divide it by 980, and make

it the third approximate difference of 4-multiplication.

53r
[153]If we want to obtain the fourth difference, we subtract the third approximate

difference from the third definite difference and call the negative remainder the

fourth definite difference. [154]Then looking at its top digit we evaluate how

much lower it is from the top digit of the third approximate difference and then

find that we divide the product of the third approximate difference and the cube

of the sagitta by the cube of the diameter. First seek the coefficient of multi-

plication and division, by the procedure, the coefficient of the product of the

sagitta and the square of the diameter, then the coefficient of the product of the

square of the sagitta and the diameter, and at last the coefficient of the cube of

the sagitta. Then we search and seek the extreme values of the coefficients and

obtain the fourth difference (to be subtracted) of 7-multiplication. [155]After the

difference of 7-multiplication, we seek the difference of 11-multiplication, next

that of 16-multiplication, next that of 22-multiplication and more. [156]These

are very complicated and will be omitted.

[157]

53v
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Square of the definite half back
1 shi 0000 00333 33351 11112 25396

90666 67282 34776 94795 95875 strong

Square of the approximate half back 1 shi

First definite difference
0 shi 0000 00333 33351 11112 25396

90666 67282 34776 94795 95875 strong

First approximate difference
0 shi 0000 00333 33333 33333 33333

33333 33333 33333 33333 33333 strong

Second definite difference
0 shi 0000 00000 00017 77778 92063

57333 33949 01443 61462 62542 strong

Second approximate difference
0 shi 0000 00000 00017 77778 92063

56553 29270 48945 16638 53847 strong

Third definite difference
0 shi 0000 00000 00000 00000 00000

00780 04678 52498 44824 08695 weak

Third approximate difference
0 shi 0000 00000 00000 00000 00000

00780 04678 52498 44824 09177 weak

[158]This main procedure runs as follows: Multiply the sagitta and the

diameter and call [the product] the square of the approximate half back

arc. [159]Place the sagitta, self-multiply it and divide it by 3; call [the

result] the first difference. [160]Place the first difference, multiply it by

the sagitta. [The result is] now in the Reality row. [161] Place the sagitta,

multiply it by 9 and divide it by 14. We subtract the product from the

diameter. [The result is] now in the Norm row. [162]Divide the Reality54r

row by the Norm row, also multiply it by 8 and divide it by 15. Call

[the result] the second difference. [163]Place the second difference and

multiply it by the square of the sagitta. [The result is] now in the Reality

row. [164]Place the sagitta, self-multiply it, multiply it by 6743008, divide

it by 26176293, add the square of the diameter to it and subtract from

it the product of the sagitta and the diameter multiplied by 1696 and

divided by 1419. The remainder is placed in the Norm row. [165]Divide

the Reality row by the Norm row, also multiply it by 43 and divide it

by 980. Call [the result] the third difference. [166]Place the square of

the approximate half back arc and add to it the first, second, and third

differences. The sum is found to be the square of the definite half back

arc. [167]We subtract the square root from it and obtain the half back

arc. ([168]We omit the differences of more than 7-multiplication of the

main procedure.)

[169]In this procedure, if we use two differences the original number is exhausted

to the order 5, and if we use three differences the original number exhausted

to the order 8. [170]Therefore, the procedure of three differences is applied for54v
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the half circle, the sagitta being large, the accuracy of order about 10. Taking

6 cases, we seek by the procedure the arc rates and regard them the general

procedures. [171]All details are recorded in the Koritsu.

[172]In the above investigation of numbers of the arc, the determination of the coef-

ficients of multipliers and divisors at each difference is the investigation of numbers

by numerical evidence. [173]The procedure to determine the back arc is the inves-

tigation of rules by numerical evidence. [174]Certainly, in [the investigation of] the

circular circumference and the back arcs, neither numbers nor procedures can be

obtained by investigation by reasonable evidence. [175]We can obtain them only

through investigation by numerical evidence. [176]This is because of the character of

the arc and the circle.

[177]This ends the examples of procedures.

One Chapter on a Theory of Proper Character
55r

[1]We are at peace when we follow the spirit of mathematics. [2]We are in trouble

when we do not follow it. [3]To follow the spirit is to follow its character. [4]If we

follow it, acknowledging that we will obtain a solution even before we understand

[the problem], we are at peace without any doubt. [5]Because we are at peace,

we always proceed and do not stagnate. [6]Because we always proceed and do not

stagnate, there is nothing which cannot be accomplished. [7]If we do not follow

it, then without knowing if we will be able to obtain [a solution] or not before we

understand [the problem], we are in doubt. [8]Because we are in doubt, we suffer

and are daunted. [9]Because we suffer and are daunted, it is difficult to obtain [a

solution]. [10]After I [myself] started to learn mathematics, looking for the easy

way I was suffering from mathematical rules for a long time. [11]Certainly, this was

because I did not exhaust my own character. [12]Gradually after 60 days’ struggle, I55v

could realize my born character was distorted and became convinced that I should

follow the spirit of mathematics.
[13]Alas, our own born character, straight or distorted, is native, we cannot change

it. Even if we study hard, it cannot be improved; even if we forget and abandon it, it

cannot be damaged in the least. [14]That is, we should speculate about its distortion
[15]but we should not speculate about its straightness. [16]If we do not exhaust

our own character, we cannot understand the truth which follows the character

of mathematics. [17]But many people do not understand the it is natural that the

native character may be straight or distorted. [18]Instead, they think that everything

becomes clear after complete study and that it is not necessary to use force. [19]How

misled they are! [20]These people think that one can obtain the straight character

by study. [21]How can such study change the [person’s] character [into one which is]56r

purely straight?
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[22]Certainly, even if, exhausting our own character, we embody the Way [of

Mathematics], the native character is the native character; it does not move, does

not change. Also, there is nothing to be puzzled and nothing to be clarified. At any

time when we are given a problem, following its difficulty, we cannot be away from

using force.
[23]Also, once I heard that one person swallowed his art. [24]Does this refer to the

person whose character is purely straight? [25]Deliberating about him, when I make

the art follow me and enter into my heart, although what can be planned follows

me, what cannot be planned may not follow me; this is because there is a difference

between what can be planned and what cannot be planned. [26]I declare that, when

I immerse myself completely in mathematics without any resistance, I [myself] and56v

the Way [of Mathematics] become mixed together, what can be planned follows me

as what can be planned and what cannot be planned also follows me as what cannot

be planned. [27]This is one outcome of the embodiment of the Way. [28]If one knows

the Way of Mathematics in heart and explain it in words, he is dishonest. [29]If one

embodies the Way and proceeds [in mathematics], he is [honest] in the truth. [30]We

cannot speculate about the truth of the embodiment of the Way. [31]But in training

myself in this truth which should not be speculated, I [myself] am sure there is one

rule which concerns the native character. [32]But I [myself] am not yet mature in

the Way. [33]Therefore, I dare not explain it. [34]When I become confident about its

meaning, I will explain it. [35]This is indeed my distorted character.
[36]Certainly, if I were of purely straight character, I would have no intention to

explain a single word about it. [37]Why should I explain? [38]What is to be explained57r

is that the native character is distorted.
[39]Generally speaking, the character is not equal among people; it may be straight

or distorted, warm or cold. [40]It is indeed in this way that I [myself] follow the

character of mathematics. But it is not always like this that others also follow it.
[41]Therefore, when a student of mathematics looks at this book, he should not take

it [as being] right immediately; [42]he should not take it [as being] wrong without

thinking. [43]I would like to explain the reason why one can recognize one’s own

native character and that the truth of mathematics follows the character.
58r

[44]End of the Treatise on Tetsujutsu.

Appendix
57v

[1]Regulated length of the middle line

when sides of a triangle differ by 1.

[2]Suppose there is a triangle. [3]The difference of the large and the middle

sides and that of the middle and the small sides are 1 respectively. [4]We

want to make the middle line regulated. [5]We ask how long the three

sides and the middle line are respectively.
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[6]

small side middle side large side middle line (to be sought)

1 2 3 empty

3 4 5 2 2/5

13 14 15 11 1/5

51 52 53 44 8/53

193 194 195 167 9/65

[7]First we take the small side to be 1, the middle side to be 2, and the large side58v

to be 3; we call them the basic numbers. ([8]That is, the middle and the small sides

form the large side.) [9]The middle line is empty. [10]This is the first case. [11]Adding

1 to the three sides we make the small side 2, the middle side 3, and the large side 4.
[12]With these values we seek the middle line and find it is not regulated. [13]Also,

adding 1 again to the three sides we make the small side 3, the middle side 4, and

the large side 5. ([14]That is, these numbers form the regular triangle.) [15]With

these values we seek the middle line and find it is regulated. [16]This is the second

case. [17]Also, adding 1 again to the three sides we make the small side 4, the middle

side 5, and the large side 6. [18]With these values we seek the middle line and find it

is not regulated. [19]Also, adding 1 again to the three sides we make the small side

5, the middle side 6, and the large side 7. [20]With these values we seek the middle

line and find it not regulated, either. [21]Also, adding again 1 to the three sides we59r

make the small side 6, the middle side 7, and the large side 8. [22]With these values

we seek the middle line and also find it not regulated, either. [23]In this way adding

1 to the three sides repeatedly we obtain the numbers of three sides and seek the

middle line for investigation; arriving at the small side 13, the middle side 14, and

the large side 15, we find the number of middle line become regulated. [24]This is

the third case. [25]Next, arriving at the small side 51, the middle side 52, and the

large side 53, we find the middle line become regulated. [26]This is the fourth case.

([27]We omit the numbers for the fifth and further cases.)
[28]At this stage, we search the numbers of the three sides for which the middle

line become regulated and find the following: multiply the middle side by 4, subtract

the middle side of the previous case from it and we obtain the middle side of the

following case. [29]Subtracting 1 from the middle side we obtain the small side;

adding 1 to it we obtain the large side. ([30]If we want to obtain the small side59v

directly, multiply the small side by 4, add 2 rods to it, subtract the small side of the

previous case from it and we obtain the small side of the following case. [31]Also,

if we want to obtain the large side directly, multiply the large side by 4, subtract 2

rods and the large side of the previous case from it and we obtain the large side of

the following case.)
[32]If we want to obtain the middle line directly, add 1 rod to the large side

of the previous case and halve it. The obtained number is the numerator of the
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inexhaustible part of the middle line. [33]Divide it by the large side of the present

case and we obtain the inexhaustible part of the middle line. [34]By the numerator

of the inexhaustible part we subtract the middle side of the present case to obtain

the integer part of the middle line. [35]Adding the inexhaustible part to it we obtain

the exact value of the middle line.

[36]The above procedure was understood by Nakane Jōemon. Thus he searched

numbers and obtained numerical evidence [of this procedure]. [37]Because there

is a reason in the basis, we can obtain the solution. But the reason is hidden60r

and is very hard to be discerned. [38]In such a case we do not seek the reason.

Only employing the numerical examples we follow the Way of Mathematics.
[39]But someone thinks there is no reason because it cannot be evaluated; he is

not knowledgeable. [40]Someone is puzzled and wants to discern the reason by

force; he is not clever.

[41]End of Appendix

[42]The thirteenth day of the summer solstice, Kinoto mi.
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VI Commentary

The procedure of translation:

1. We italicize the Japanese and Chinese words (names of dynasties, periods, etc.)

which are not translated.

2. Quotations in the text are surrounded by quotation marks, like “...”

3. The two lined parts of the original text, which is called warichū, are surrounded

by parenthesizes, like (...).

4. Bold face indicates that the original text is in Chinese.

5. Items in brackets “[...]” have been added for the sake of clarity but are only

implied in the original text.

6. Numbers in brackets “[...]” indicate verse numbers in the Japanese original

text.

Comments on Preface

[1] tetsujutsu 綴術 (zhuishu in Chinese) is translated in this monograph as “technique

of linkage.” This word is one of the key words of this monograph. Literally it should

be rendered the “Procedure of Linkage,” The word tetsu means “to link,” “to knit,”

“to intertwine” and the word jutsu means “procedure,” “technique,” “method,” etc..

Zu Chongzhi 祖沖之 wrote a book called the Zhuishu, of which we only know the

title.

jutsuri 術理 is translated in this monograph as “reason of procedure”, where ri

理 (reason) is a philosophical term of Chinese scholar Zhu Ji 朱熹 and his followers,

which the samurai of the Edo period learned at the school, while jutsu 術 (proce-

dure) is a technical term employed in Chinese mathematicaltexts since the Jiuzhang

Suanshu 九章算術, which are a collection of problems, answers, and procedures.

Once the problem is given accompanied with the answer, then the procedure is to

give steps to attain the answer. (See [ChmlaEa2004] and [ShenEa1999].) We can

say the procedure’s role in Chinese classics is a program in the modern computer

language. Here the jutsuri (reason of procedure) indicates not only the program

itself but also the algorithm behind it.
[9] shitsu 質 is translated in this monograph as “character”. Note that shitsu was

translated into “attribute” in [Horiuchi1994b]. At the last chapter on Proper Char-

acter, Takebe Katahiro 建部賢弘 discusses the character of mathematical objects as

well as that of a mathematician.
[13] The three aims of mathematical research are hōsoku 法則, jutsuri 術理, and insū

(or ensū) 員数, which are rendered into “rule and law”, “reason of procedure”, and

“numerical quantity”. The author sometimes abbreviate hōsoku as hō 法, jutsuri as

jutsu 術, and insū as sū 数.
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[20] Sui 隋 is a Chinese dynasty (581 – 618).
[25] mizunoe tora 壬寅 is a year in the sexagenarian cycle. Kyōhō 享保 is a Japanese

period (1716–1736). The seventh year of Kyōhō corresponds with 1722 AD.
[26] Edo 江戸 is an old name of Tokyo. Musashi 武蔵 is a Province consisted of

today’s Tokyo, Saitama and a part of Kanagawa prefectures.

Comments on Catalogue

In this catalogue chapter titles are represented simply by two Chinese character.

The full titles can be found at the beginning of each chapter.

Comments on Chapter 1

Chapter 1 of the Tetsujutsu Sankei 綴術算経 corresponds to Chapters 1 and 2 of

the Fukyū Tetsujutsu 不休綴術 and deals with multiplication and division. The

reasons of the usage of the multiplication chant, the rule of division, and the rule

of division by one digit numbers are made clear. Takebe Katahiro had learned

these rules and reasons in the summary 総括 of the Suanxue Qimeng 算学啓蒙
(Zhu Shijie 朱世傑, 1299), from which he cited examples on multiplication and

division. He emphasizes that multiplication is fundamentally decomposable into

repeated addition, and division into repeated subtraction. As for multiplication

and division using an abacus, we refer the reader to the Jinkōki 塵劫記 in English

[WasanInst2000] and [Kojima1963].

The structure of this Chapter is as follows: [1-27] multiplication, [28-66] division, [67-68]

closing remark, and [69-78] comments on the closing remark.

[2] Each chapter starts generally with a problem written in Chinese of the format

“Suppose 仮如 · · · . Question 問 · · · . Answer 答 · · · .”
The rice is unhulled according to the Sangaku Keimō Genkai Taisei 算学啓蒙諺

解大成. koku 斛 is a unit for grain. See VII Comments on Units.
[3] sen 銭 is a unit for silver money.
[20] Here the author explains the operation on a counting board or on an abacus.

Comments on Chapter 2

Chapter 2 treats the “rule of element placement 立元”, i.e., the so-called “procedure

of celestial element 天元”, which is a way to treat algebraic equations or formulas

in traditional Chinese mathematics. Note that Takebe Katahiro does not use the

terminology ‘procedure of celestial element” in the Tetsujutsu Sankei.

The structure of Chapter 2 is as follows: [1-5] historical remarks; [6-9] problem and

answer; [10-30] explanation on the counting board algebra; [31] comments; [32-34] divi-
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sion viewed from the counting board algebra; [35-36] comments; [37-39] old elementary

method to solve the problem; [40-43] comparison of the old elementary method and the

new algebraic method; [44-52] statement of procedure; [53-60] evaluation of the rule of

element placement and comments on Seki Takakazu’s achievement; and [61-67] closing

remark.

[2] Zhiyuan 至元 is a Chinese period (1335–1340) in the Yuan 元 dynasty (1271 –

1368). Guo Shoujing 郭守敬 (1231 – 1316) is a Chinese astronomer, engineer, and

mathematician.
[3] Dade 大徳 is a Chinese period (1297–1307) in the Yuan Dynasty.
[6] bu 歩 is a unit for length and for area. 1 bu is approximately equal to 1.8 m and

1 [squared] bu is approximately equal to 3.3m2. See VII Comments on Units.
[10] The original sense of seki 積 is something accumulated, the accumulation. Here,

seki is rendered the “area”, the areal accumulation.

Here, the rows of a counting board are called Reality 実, Square 方, and Corner

隅. See VIII Comments on Counting Board.
[11] Here, the rows of a counting board are called Reality, Square, Side 廉, and

Corner. See VIII Comments on Counting Board.
[12] Here, the rows of a counting board are called Reality, Square, [first] Side, [second]

Side, and Corner. See VIII Comments on Counting Board.
[13] The n-th root of x, namely n

√
x, was called the (n − 1)-root of x in traditional

Japanese mathematics. The 1-root was called square root and the 2-root the cubic

root.
[18-28] It is important to note that a configuration

a0
a1
a2
a3

 (1)

on the counting board is used to represent both a polynomial

a0 + a1x+ a2x
2 + a3x

3 (2)

and an algebraic equation

a0 + a1x+ a2x
2 + a3x

3 = 0. (3)

In ancient China, the configuration (1) on the computing board represented the

equation (3). Because Takebe Katahiro found it difficult to overcome this ambiguity,

he tried to give a lengthy rational interpretation why he regarded the configuration

(1) as a polynomial (2).
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[24] The n-th power of x, namely xn, was called the (n − 1)-multiplication accu-

mulation of x, because the quantity is obtained by n − 1 multiplications. The

1-multiplication accumulation is called the square and the 2-multiplication accumu-

lation the cube.
[29] This passage explains the procedure of extraction. See VIII Comments on Count-

ing Board.
[31] This passage explains the rule of the element placement according to the Kai

Indai no Hō 解隠題之法 written by Seki Takakazu 関 孝和.
[32] The Square row was sometimes called the Norm row, especially when we are

dealing with the division. Note that two Chinese characters fa (法, Norm) and fang

(方, Square) have the same Japanese pronunciation hō.
[40] The problem considered here is to solve a simultaneous system of equations,

xy = 180, x+ y = 27.

Takebe employed the next figure of a square of the sum of the long and the short

sides to illustrate an old method for solving such systems of equations.

x

y

If x and y represent, respectively, the short and long sides of the four congruent

rectangles, then we see that (x + y)2 − 4xy = (y − x)2, or in other words, y −
x =

√
(x+ y)2 − 4xy. In our case, y − x =

√
(27)2 − 4(180). The problem of

finding x has been reduced to determining the square root of a natural number since

x = {(x + y) − (y − x)}/2. (Techniques for determining such square roots were

already known since the Jiuzhang Suanshu compiled in the Han 漢 dynasty.)
[44-52] The formal statement of the procedure to solve the problem [6-9]. The four

symbols appeared in the text represent the configurations on the counting board by

means of counting rods:[
0

1

]
,

[
27

−1

]
,

 0

27

−1

 ,

−18027
−1

 .

Note that, in the original text, positive numbers were printed in red and negative

numbers in black. See VIII Comments on Counting Board for the manipulation.
[59] In 1683, Seki Takakazu wrote the Kai Fukudai no Hō 解伏題之法, in which Seki

exposed the theory of resultants and determinants.

Both the Kai Indai no Hō and the Kai Fukudai no Hō are later complied in

Volume 17 of the Taisei Sankei 大成算経.
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Comments on Chapter 3

The rule of reduction約分 is dealt with in Chapter 3. A main purpose of this chapter

is to illustrate what we call Euclid’s algorithm for finding the greatest common

divisor.

The structure of the chapter is as follows: [1-3] the statement of problem and answer;
[4-9] an elementary method of the reduction; [10-11] the reduction by means of Euclid’s

algorithm; [12-20] statement of procedure to solve the problem; [21-26] comments; and
[27] closing remark.

[1-3] The problem is to simplify a fraction 105/168.
[4-9] First of all dividing the denominator and the numerator by 2, 3, 4, · · · consec-
utively, Takebe Katahiro obtains the common divisors 3, 7, and 21.
[10-11] The great common divisor (GCD), namely 21, is then used to determine the

reduced fraction 5/8. The GCD is obtainable by Euclid’s algorithm as follows:

168 = 105× 1 + 63,

105 = 63× 1 + 42,

63 = 42× 1 + 21,

42 = 21× 2.

Comments on Chapter 4

This chapter deals with Chinese interpolation method using finite differences. The

problem is to find the total volume of a stack of squares with unit thickness forming a

“quadrangular pile” or pyramid. The volume is given by the series S(n) =
∑n

k=1 k
2

where the upper limit n = 19 is the base length of the particular pyramid given as

an example.

The structure of Chapter 4 is as follows: [1-4] problem and answer; [5-23] numerical

examples; [24-26] comments; [27-30] definition of definite product difference; [31-32] ob-

servations; [33-38] definition of planar product difference; [39-42] observation; [43-60]

calculation of cubic, square, and definite differences; [61-65] observation; [66-67] state-

ment of procedure; [68-72] comments; [73-76] closing remark; and [77-89] comments on

the closing remark.

[1-4] The sum S(n) =
∑n

k=1 k
2 is called the accumulation 積 of the quadrangular pile

四角垜 with a base length 底面 n. The problem is to find a procedure to calculate

S(19) = 2470.
[5-22] To have numerical examples, Takebe first calculates S(1) = 1, S(2) = 5,

S(3) = 14, S(4) = 30, S(5) = 55, S(6) = 91, and S(7) = 140.
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[24-26] The author claims S(n) is a cubic polynomials and that the coefficients can

be determined taking differences three times. The 2-multiplication accumulation of

x is x3.
[27-28] S(n)/n is called the “first definite sum 第一定積”. It must be a square poly-

nomial. Assuming S(n)/n = An2 + Bn + C, Takebe presents here an algorithm

to calculate the “cubic difference 立差” A, the “square difference 平差” B, and the

“definite difference 定差” C.

Let nk, k = 1, 2, 3, · · · be an increasing sequence of natural numbers. (In the text

it is assumed that nk = k, k = 1, 2, 3, · · · .) Denote the “first definite sum” by

q(1,1)(k) = {S(nk)}/nk (= An2
k +Bnk + C) for k = 1, 2, 3, · · · , 7.

If nk = k, then q(1,1)(1) = 1, q(1,1)(2) = 21
2 , q

(1,1)(3) = 42
3 , q

(1,1)(4) = 71
2 , q

(1,1)(5) =

11, q(1,1)(6) = 151
6 , q

(1,1)(7) = 20.
[29-30] Define the “[first] definite sum difference [第一]定積差” by

d(1,1)(k) = q(1,1)(k + 1)− q(1,1)(k).

If nk = k, then d(1,1)(1) = 11
2 , d(1,1)(2) = 21

6 , d(1,1)(3) = 25
6 , d(1,1)(4) = 31

2 ,

d(1,1)(5) = 41
6 , d

(1,1)(6) = 45
6 .

[33-34] Define the “square case difference divisor 平限差法” by

δ(1)(k) = nk+1 − nk.

If nk = k, then δ(1)(1) = 1, δ(1)(2) = 1, δ(1)(3) = 1, δ(1)(4) = 1, δ(1)(5) = 1,

δ(1)(6) = 1.
[35-36] Define “square sum 平積” by

q(1,2)(k) = d(1,1)(k)/δ(1)(k) (= A(nk+1 + nk) +B).

If nk = k, then q(1,2)(1) = 11
2 , q(1,2)(2) = 21

6 , q(1,2)(3) = 25
6 , q(1,2)(4) = 31

2 ,

q(1,2)(5) = 41
6 , q

(1,2)(6) = 45
6 .

[37-38] Define the “square sum difference 平積差” by

d(1,2)(k) = q(1,2)(k + 1)− q(1,2)(k).

If nk = k, then d(1,2)(1) = 2
3 , d

(1,2)(2) = 2
3 , d

(1,2)(3) = 2
3 , d

(1,2)(4) = 2
3 , d

(1,2)(5) = 2
3 .

[43-44] Define “cubic case difference divisor 立限差法” by

δ(2)(k) = nk+2 − nk.

If nk = k, then δ(2)(1) = 2, δ(2)(2) = 2, δ(2)(3) = 2, δ(2)(4) = 2, δ(2)(5) = 2.
[45-46] Define the “cubic sum 立積” by

q(1,3)(k) = d(1,2)(k)/δ(2)(k) (= A).
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If nk = k, then q(1,3)(1) = 1
3 , q

(1,3)(2) = 1
3 , q

(1,3)(3) = 1
3 , q

(1,3)(4) = 1
3 , q

(1,3)(5) = 1
3 .

[47] Thus, we have found the “cubic difference 立差” A = q(1,3)(n) = 1
3 .

[48-49] Next, define the “second definite sum 第二定積” by

q(2,1)(k) = q(1,1)(k)−An2
k (= Bnk + C).

If nk = k, then q(2,1)(1) = 2
3 , q

(2,1)(2) = 11
6 , q

(2,1)(3) = 12
3 , q

(2,1)(4) = 21
6 , q

(2,1)(5) =

22
3 , q

(2,1)(6) = 31
6 , q

(2,1)(7) = 32
3 .

[50-51] Define the “[second] definite sum difference [第二]定積差” by

d(2,1)(k) = q(2,1)(k + 1)− q(2,1)(k).

If nk = k, then d(2,1)(1) = 1
2 , d

(2,1)(2) = 1
2 , d

(2,1)(3) = 1
2 , d

(2,1)(4) = 1
2 , d

(2,1)(5) = 1
2 ,

d(2,1)(6) = 1
2 .

[52-53] Define the “[second] square sum [第二]平積” by

q(2,2)(k) = d(2,1)(k)/δ(1)(k) (= B).

If nk = k, then q(2,2)(1) = 1
2 , q

(2,2)(2) = 1
2 , q

(2,2)(3) = 1
2 , q

(2,2)(4) = 1
2 , q

(2,2)(5) = 1
2 ,

q(2,2)(6) = 1
2 .

[54] Thus, we have found the “square difference 平差” B = q(2,2)(n) = 1
2 .

[55-56] Next, define the “third definite sum 第三定積” by

q(3,1)(k) = q(2,1)(k)−Bnk (= C).

If nk = k, then q(3,1)(1) = 1
6 , q

(3,1)(2) = 1
6 , q

(3,1)(3) = 1
6 , q

(3,1)(4) = 1
6 , q

(3,1)(5) = 1
6 ,

q(3,1)(6) = 1
6 , q

(3,1)(7) = 1
6 .

[57] Thus we have found the “definite difference 定差” C = q(3,1)(n) = 1
6 .

[58] Takebe observes that we need only three values k = 1, 2, 3 to solve the given

problem by the above method.
[62] In the text it is assumed that nk = k but the procedure can be understood better

with the general case.
[63] As Takebe mentioned, this algorithm can be extended to the case of q(1,1)(k) =

An3
k +Bn2

k + Cnk +D or polynomials of higher degree.
[66-67] Formal statement of the Procedure: Let n be the base length. Then S(n)/n =

(An+B)n+ C and we obtain the sum

S(n) = {((2n+ 3)n+ 1)n}/6.

Compare Takebe’s solution
∑n

k=1 k
2 = {((2n + 3)n + 1)n}/6 with that typically

given in today’s calculus texts:
∑n

k=1 k
2 = {n(n+1)(2n+1)}/6. Note that Takebe’s

solution was well known among Japanese mathematicians of the 18th century.
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[70-71] Seki found the formula for the sum of S(n, p) =
∑n

k=1 n
k in the Katsuyō Sanpō

括要算法 (1712) for p = 1, 2, · · · , 10. Seki’s results can be compared with that of

Jacques Bernoulli in 1713.
[82] “To increase or to decrease at the extreme point of saturation or exhaustion 満
極干尽” refers Takebe’s idea on the “three essentials三要” of mathematics discussed

in Volume 4 of the Taisei Sankei. (See [Xu2002] and [Ozaki2004].)

Comments on Chapter 5

The reason of multiplying first and dividing later had been considered as one of

important methods of calculation since the Jiuzhang Suanshu and was explained in

detail in the Suanxue Qimeng.

The structure of Chapter 5 is as follows: [1-5] problem and answer; [6-9] a common

sense method; [10-11] observation; [12-17] statement of procedure; [18-20] comments;

and [21-22] closing remark.

[2] tan 端 is a unit for length of cloth.
[6] 1.33333 strong 強 stands for a number x with 1.333331 ≤ x < 1.333335. If

1.33333 < x < 1.333331, x is called 1.33333 slightly strong 微強.
[7] 6.34921 weak 弱 stands for a number x with 6.349205 ≤ x ≤ 6.349209. If

6.349209 < x < 6.34921, x is called 1.34921 slightly weak 微弱.
[18-20] Takebe illustrates the reason of multiplying first and dividing later by means

of a practical example. He obtains the solution by two different methods:

(1) Common sense method:
(

4 tan

3 weavers

)
21 days

× 45 days

× 7 weavers =


(
4

3

)
21
· 45

 · 7 tan

(2) Applying the reason of multiplying first and dividing later:

4 · 7 · 45
3 · 21

tan weavers days

weavers days
=

4 · 7 · 45
3 · 21

tan

The common sense method employs understandable units (e.g., tan/weaver and

(tan/weaver)/day) but introduces an infinite decimal in the first step of the compu-

tation (4/3 = 1.3̄). Applying the reason of multiplying first and dividing later, one

works entirely with whole numbers (desirable on an abacus) but the unit of both the

numerator (tan weaver days) and denominator (weaver days) do not have practical

meaning.
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Comments on Chapter 6

Takebe Katahiro assumes that the readers are familiar with both the rule of element

placement (Chapter 2) and the procedure of extraction (Chapter 10) . Readers are

advised to read first our Comments on these two chapters.

The procedure for maximizing the volume of a parallelepiped subject to con-

straints on its dimensions is described in this chapter. (See [Ogawa1998b].)

The structure of Chapter 6 is as follows: [1-5] statement of problem and answer. [6-7]

comments; [8-11] calculation of the volume of a parallelpiped; [12-13] comments; [14-24]

calculation of the counting board algebra; [25-36] statement of the procedure; [37-42]

closing remark; and [43-50] comments on the closing remark.

[1-4] Suppose that the width x, length y, and height z of the parallelepiped satisfy

the relations

x− y = 7, y + z = 8.

The problem is to find the extreme value of the volume xyz.
[8-11] Let D = 7 and S = 8. (D stands for “Difference” and S stands for “Sum”.)

Knowing that the Square row vanishes if the value in the Reality row takes an

extreme value (i.e., a maximal or minimal value), Takebe tries to find the equation

satisfied by extreme values of the polynomial

V (y) = (D + y)y(S − y) = DSy + (S −D)y2 − y3.

[14-23] Takebe applies the procedure of extraction of the quotient number as follows:

Quotient Reality Square Side Corner

y S −D -1

(S −D)y − y2 −y
(the first number
which ought to
extract the Square row)

(S −D)y − y2 (S −D)− y -1
(the first number
to extract the Side
row)

(S −D)y − 2y2 −y
(the second number
which ought to
extract the Square row)

2(S −D)y − 3y2 (S −D)− 2y -1
(the extreme case of (the second number
the Square row) to extract the Side

row)

He omits the Reality row which is unnecessary here. Moreover, in the Square row,

he omits the original value DS.
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In the first step of the procedure of element placement, Takebe declares that y is

a new variable. See VIII Comments on Counting Board. His second step describes

the above manipulations in y as operations on configurations. His third step is to

cancel the original value DS in the Square row with the “extreme case of the Square

row” to form the equation

DS + 2(S −D)y − 3y2 = 0,

which is the equation V ′(y) = 0.

Note that the notation in the text is an example of the side writing method

invented by Seki Takakazu. Allowing algebraic combination of symbols as coefficients

of a (one variable) polynomial, Seki inaugurated a method to handle polynomials of

several variables.

Comments on Chapter 7

The arithmetic removal deals with a mathematical problem of congruence stemming

from the problem known in the West as the Josephus problem.

The structure of Chapter 7 is as follows: [1-7] presentation of problem; [8-17] numerical

examples; [18-23] statement of procedure; [24-37] comments on Seki Takakazu, Takebe

Kata’akira, and Nakane Genkei; and [38-40] closing remark.

[1-7] Let one black pebble and n white pebbles be arranged on a circle. Calling the

black pebble the first pebble, we remove every m-th pebble repeatedly. The problem

is to determine the number n for which the black pebble remains with all the white

pebbles removed.
[8-17] We call m the removal number. By observation, Takebe Katahiro lists such

numbers n for each removal number m = 2, 3, 4, 5, 6:

m n

2 1, 3, 7, 15, 31

3 3, 5, 8, 30

4 1, 4, 8, 11, 15

5 2, 5, 11, 14, 36

6 1, 2, 7, 13

We now label on the circle the consecutive positions of the original n+1 pebbles

as 0, 1, 2, 3, · · · , n, with the black pebble at position 0. Let Nn+1,m be the position

of the last pebble remaining when we play the game with 1 black and n white pebbles

and removal number m. Evidently, N1,m = 0, because there is no white pebble at

the beginning. When m = 5, Nn+1,m are as follows:

Nn+1,m 0 1 0 1 1 0 5 2 7 2 7 0 5 10 0 5 10 15

n+ 1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
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Note that our original problem is solved by finding n for which Nn+1,m = 0.

From the table we see n = 0, 2, 5, 11, 14 satisfy this condition when m = 5. Based

upon this numerical calculation, Takebe Katahiro recognized the following recursion

relationship

Nn+1,m ≡ Nn,m +m (mod n+ 1) (4)

With the initial condition N1,m = 0 we can calculate Nn+1,m recursively and find

the n’s for which Nn+1,m = 0.
[18-23] Takebe Katahiro was able to represent the above recursion formula by a

sequence of operations involving two rows on the counting board. (The first row

of the board he called Reality and the second row the Norm. See Comments on

Chapter 2.):

First leaving the Reality empty place 1 rod at the Norm.

Then add m to the Reality and 1 to the Norm.

If the number at the Reality exceeds that at the Norm, the number at the Reality shall

be replaced by its remainder of the repeated subtraction by the number at the Norm.

This sequence of procedures on the counting board is equivalent to (4) in modern

mathematical language.
[27] According to H. Komatsu, this is to eliminate variables of two algebraic equations

using the determinant of the fifth order (resultant).
[30] Nakane Jōemon 中根上右衛門 is also known as Nakane Genkei 中根元圭 (1662-

1733).
[32] The calculation of the accumulated years 積年 refers Problem 49 of the Kenki

Sanpō.

Comments on Chapter 8

In this chapter the author describes two methods to calculate the surface area S(d)

of a sphere with diameter d = 2r.

The structure of Chapter 8 is as follows: [1-4] problem and answer; [5-12] numeri-

cal examples; [13-15] observation; [16] a geometrical method; [17-18] comments; [19-21]

statement of procedure; [22-47] comments on Seki’s mathematics; and [48-53] closing

remark.

[1-4] Here is the question and the answer. For the units see VII Comments on Units.

In [4], sun means the squared sun.
[5-12] The first method amounts to numerical differentiation. Let V (d) denote the

volume of a ball with diameter d = 2r. Takebe assumes the formula V (d) = π
6d

3 =
4π
3 r3 is known. (In Chapter 9 he describes two methods to find V (d) and in Chapter
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11 he mentions the calculation of π with 42 digit accuracy.) Considering shells,

he calculates approximate values of the area of a sphere with diameter d = 10 as

follows:
[5-7] a1 =

V (10.01)−V (10)
0.005 = 1.57236764672 (s)

0.005 = 314.473529344 (s),
[8-9] a2 =

V (10.0001)−V (10)
0.00005 = 0.00157081203481 (w)

0.00005 = 314.162406962 (s),
[10-11] a3 =

V (10.000001)−V (10)
0.0000005 = 0.0000157079648387 (s)

0.0000005 = 314.159296775 (w).
[13-15] Then by the procedure of the decremental divisor 損約の術 (see below) he

calculates (6), which should give a better approximation of S(d). He then finds

a = 314.159265359 (w). By computer calculation, we find a = 314.15926536944 (s),

which differs a little from Takebe’s value. Takebe notices that this value is the same

as πd2 and claims S(d) = πd2.

When the first three terms of a increasing series a1, a2, a3, · · · , an, · · · (i. e.,

an+1 − an > 0) are given, Seki Takakazu claims that

a = a2 + (a2 − a1)(a3 − a2)/{(a2 − a1)− (a3 − a2)} (5)

gives a good approximation of limn→∞ an. (See Volume 2 of the Katsuyō Sanpō.)

This is the procedure of the incremental divisor増約の術. If the series an is decreas-

ing (i. e., an − an+1 > 0), (5) is rewritten as

a = a2 + (a1 − a2)(a2 − a3)/{(a1 − a2)− (a2 − a3)} (6)

and called the procedure of decremental divisor 損約の術. Because mathematicians

of the Edo period preferred to have positive factors, the distinguished between (5)

and (6).

Later, in his book the Kigenkai 起源解 Matsunaga Yoshisuke 松永良弼 (?–1744)

explained this claim showing the right-hand side of (5) is the limit lim an when the

first differences form a geometric sequence. In fact, suppose

(a3 − a2)/(a2 − a1) = (a4 − a3)/(a3 − a2) = (a5 − a4)/(a4 − a3) = · · · = ρ,

then we have

lim an = a2 + (a3 − a2) + (a4 − a3) + (a5 − a4) + · · ·

= a2 + (a3 − a2){1 +
a4 − a3
a3 − a2

+
a5 − a4
a4 − a3

· a4 − a3
a3 − a2

+ · · · }

= a2 + (a3 − a2){1 + ρ+ ρ2 + · · · }
= a2 + (a3 − a2)/(1− ρ) = a2 + (a3 − a2)/(1− (a3 − a2)/(a2 − a1)).

In our case, taking ϵ = 0.001 we have

a1 = {V (d+ ϵ)− V (d)}/(ϵ/2) = (π/6)(6d2 + 6dϵ+ 2ϵ2)

a2 = {V (d+ ϵ2)− V (d)}/(ϵ2/2) = (π/6)(6d2 + 6dϵ2 + 2ϵ4)

a3 = {V (d+ ϵ3)− V (d)}/(ϵ3/2) = (π/6)(6d2 + 6dϵ3 + 2ϵ6)
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and

a1 − a2 = (π/6)(6d(ϵ− ϵ2) + 2ϵ2 − 2ϵ4)

a2 − a3 = (π/6)(6d(ϵ2 − ϵ3) + 2ϵ4 − 2ϵ6),

which does not form a geometrical series but the major parts of which πdϵ, πdϵ2, · · ·
form a geometric form. Therefore, we can expect the procedure of the decremental

divisor (6) yields a good result.
[16] The second method to calculate S(d) is more geometrical and ascribed to Master

Seki Takakazu. Seki Takakazu considered intuitively the ball to be a cone with the

center of the ball as the apex of the cone, the surface area S(d) of the ball as the

base B of the cone, and the radius d
2 of the ball as the height h of the cone.

[17-19] Because the volume V of the cone is given by V = 1
3Bh, Seki found V (d) =

1
3S(d)

d
2 . Because V (d) = π

6d
3 was known, he found S(d) = πd2 without laborious

calculation.
[19-21] Here stated the procedure in the final form: Let r be the radius of the ball.

Then the diameter d is equal to 2r. The surface area is given by (2r)2×(2πr)/(2r) =
πd2.
[21] π is called the circular ratio円周の法 in [17, 18]. If π is approximated by a fraction,

the numerator is called the rate of circular circumference and the denominator is

called the rate of the diameter
[22-47] Takebe Katahiro compares his method and his master’s. Although his master’s

method is more elegant and works in this particular case, Takebe claims his method

can be applied to more complicated cases, for example, in the study of numbers

related to the circular arc (See Chapter 12.)

Comments on Chapter 9

This chapter deals with the procedure of incremental divisor, which we encountered

in Chapter 8.

The structure of Chapter 9 is as follows: [1-5] comments on the partitioning method; [6-8]

two partitioning methods to find the circumference of a circle; [9-15] two partitioning

methods to find the volume of a sphere; [16-23] comments on the merits and demerits of

these methods in relationship to the natural attributes of the respective objects (circle

or sphere.); and [24-25] closing remark.

[6-7] Mark n − 1 points on a radius which divide it into n equal segments. Draw

chords perpendicular to the radius through these n− 1 points, and join consecutive

points on the circle with chords.
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The length of this piecewise linear curve Γ can be calculated by what Takebe calls

the procedure of the right-angled triangle (i.e., Pythagoras’ Theorem.) Because

the length of the k-th half chord perpendicular to the radius is given by rhk =

r
√

1− (k/n)2, the length of the k-th chord of Γ is equal to r
√

(1/n)2 + (hk − hk−1)2.

The chords which approximate the semicircle come in pairs (left and right), so the

n-th approximation of the full circumference is given by

Sn = 4r

n∑
k=1

√
(1/n)2 + (hk − hk−1)2.

Doubling the partitioning number n = 2, 4, 8, · · · , we obtain the following values

with r = 1/2. (To apply recursive computation, Japanese mathematicians must

have done the calculation in this way):

n Sn P.I.D.

2 3.03528

4 3.1045

8 3.12854 3.14134700

16 3.13699 3.14156089

32 3.13997 3.14158800

64 3.14102 3.14159191

(P.I.D. stands for the Procedure of Incremental Divisor.)
[8] Divide the circle equally into 4 parts and connect the dividing points to obtain

the inscribed square. Then the length of a side is equal to a4 =
√
2r and the length

of the perimeter of the inscribed regular square is equal to 4a4 = 4
√
2r. By the

procedure of the right angled triangle, the length of a side of the inscribed regular

octagon a8 is given as follows: a8 =
√

(r −
√

r2 − (a4/2)2)2 + (a4/2)2. This relation

holds in general. Let an be the length of a side of the inscribed regular n-gon. Then

we have

a2n =

√
(r −

√
r2 − (an/2)2)2 + (an/2)2.
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If we put a2 = 2r, this holds even for n = 2. Therefore, if we know the length of

the perimeter of the inscribed square, we can calculate, recursively, the length of

the perimeters of the inscribed regular octagon, 16-gon, 32-gon, 64-gon · · · . The

numerical calculation with r = 1/2 gives us

n nan P.I.D.

2 2.000000

4 2.828443

8 3.061467 3.15268277

16 3.121445 3.14223140

32 3.136548 3.14163181

64 3.134033 3.14159509

Takebe Katahiro considers the use of inscribed regular polygons to be more nat-

ural for a circle than the use of the piecewise linear curve Γ. However, numerical

calculation by computer shows that there is no significant difference between these

two approaches. We are not sure whether or not Takebe Katahiro really executed

the former calculation.
[9] The formula for the volume of a circular platform is quoted here. A circular

platform is a cone truncated by a plane perpendicular to the axis. Let r1 be the

radius of the bottom, r2 that of the top, h the height. Then the platform’s volume

is given by

V =
πh

3
(r21 + r1r2 + r22).

If r2 = 0, V = πhr21/3 is the volume of a circular cone; if r1 = r2, V = πhr31 is the

volume of a cylinder.

Divide the radius of a sphere into n segments. Because the radius of the small

circle perpendicular to the axis and passing through the k-th division point is given

rk = r
√

1− (k/n)2, the volume of the k-th circular platform inscribed in the sphere

is given by

Vk =
πr

3n
(r2k−1 + rk−1rk + r2k).

Therefore, the volume of the hemisphere is approximated by

V (n) =
πr

3n

n∑
k=1

(r2k−1 + rk−1rk + r2k).

Because the (approximate) value of π is known, we calculate numerically V (n)/π

with r = 1.
[13] Along with V (n), we also calculate numerically, with r = 1, the following

V̄ (n) =
πr

2n

n∑
k=1

(r2k−1 + r2k).
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The results are as follows:

n V (n)/π P.I.D. V̄ (n)/π P.I.D.

2 0.561004 0.625

4 0.635799 0.65625

8 0.657951 0.667271 0.664063 0.66667

16 0.664251 0.666754 0.666016 0.66667

32 0.666005 0.666682 0.666504 0.66667

64 0.666487 0.66667 0.666626 0.66667

As evident from this numerical calculation, V (n)/π converges to the extreme

value 2/3 sufficiently fast. (If we use the Procedure of Incremental Divisor, this

convergence becomes faster.) But V̄ (n)/π converges much faster to the extreme

value (if we use the Procedure of Incremental Divisor the third term gives an accurate

approximation.) Although a geometrical meaning cannot be given to V̄ (n), this

gives a very accurate approximation. Takebe Katahiro praised in [15] the latter

approximation saying this was a “miraculous procedure”.

Explanation of the “miraculous procedure.” Approximating the hemisphere by

circumscriptive circular cylinders, we obtain

U(n) =
πr

n

n∑
k=1

r2k−1.

This gives an upper bound for the volume of the hemisphere. Approximating the

hemisphere by inscribed circular cylinders, we obtain

W (n) =
πr

n

n∑
k=1

r2k.

This gives a lower bound for the volume of the hemisphere. These quantities satisfy

the inclusion relation W (n) < V (n) < U(n). V̄ (n) is nothing but the average of

W (n) and U(n). By the Procedure of Piling 垜積術 (that is, the formulas
∑n

k=1 k =

n(n + 1)/2,
∑n

k=1 k
2 = n(n + 1)(2n + 1)/6, etc.), we can calculate exactly U(n),

W (n), and consequently V̄ (n):

U(n) = (−1 + 3n+ 4n2)/6n2, W (n) = (−1− 3n+ 4n2)/6n2,

V̄ (n) = (−1 + 4n2)/6n2 = 2/3− 1/6n2.

Therefore, we have

V̄ (2k) =
2

3
− 1

6

(
1

4

)k

.

In this case, the extreme value can be obtained exactly by the Procedure of Incre-

mental Divisor. Only the first 3 terms of V̄ (n) are necessary to obtain the extreme

value 2/3.
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Chapter 9 of the Tetsujutsu Sankei reveals that Takebe Katahiro recognized this

phenomenon through numerical calculation. This passage does not suggest that

both Seki Takakazu and Takebe Katahiro had some notion of upper and lower ap-

proximations, used in today’s Riemann integration.

Instead, Takebe Katahiro tried to understand the fast or slow convergences by

the character of the dividing method and that of the figure. If two characters

are conformable, he said a good result could be expected. Takebe Katahiro also

thought that if the character of a mathematician is conformable to the character of

the method of investigation, he could produce a good result. This kind of reasoning

is stated in the concluding chapter named One Chapter on a Theory of Proper

Character.

Comments on Chapter 10

The procedure of root extraction is a method to calculate numerically the square

root of 1166, digit by digit, using the counting board.

The structure of Chapter 10 is as follows: [1-3] statement of problem and answer; [4-7]

statement of procedure; [8-23] manipulation on the counting board to execute the proce-

dure of root extraction; [24-29] comments on manipulation; and [30-31] closing remark.

[1] Problem is to solve numerically the quadratic equation

−1166 + x2 = 0. (7)

[5-6] The coefficients are represented by counting rods and placed on a counting

board. See VIII Comments on Counting Board.
[8-23] Here is the series of operations to find the root of the equation (7). See VIII

Comments on Counting Board.

Comments on Chapter 11

This chapter explains a method of calculation of the circular constant π up to more

than 40 digits and a method of approximation of π by fractions. The method for

calculating π is equivalent to the modern Romberg method which employs repeated

Richardson extrapolation.

The structure of Chapter 11 is as follows: [1-8] calculation of the square of the cut out

inscribed 2n-gon’s perimeter; [9-12] comments on Seki Takakazu’s calculation; [13-25]

calculation of the square of π using repeatedly the procedure of the incremental divi-

sor; [26-30] comparison with Seki’s calculation; [31] π with 41 digits accuracy; [32-47]

calculation of approximate fractions by means of residual devision; [48-51] explanation
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of Seki’s method to find approximate fractions; [52-62] desirable approximation for ap-

plication; [63-73] Zu Chongzhi’s result according to the Book of the Sui dynasty; and
[74-77] closing remark.

[1-8] Let Ln be the perimeter of the regular 2n-gon inscribed within a circle of diam-

eter d = 10 and An = L2
n be the square of the cut out perimeter 截周冪. Takebe

calculates first An for n = 3, 4, · · · , 9 numerically by the repeated use of the regular

triangle rule. A computer gives us the following values for n = 3, 4, · · · , 9:

A2 = 800.000000000000000000000000000000000000000000000,

A3 = 937.258300203047921917298041264483074288524999396,

A4 = 974.341983855529521559255175721109928673067188945,

A5 = 983.793643354601004739469509926961306934592978261,

A6 = 986.167977534077697057392003178512061342746884125,

A7 = 986.762276722775888059101381344711112127598833982,

A8 = 986.910896278011524659119173886945361719848934671,

A9 = 986.948053964673231795110590765801791730892115570.

Takebe published these values in the Enritsu 円率, which is most probably Chapter 1

in the Volume 12 of the Taisei Sankei.
[9] In obtaining π, Takebe comments that it is better to calculate π2 by means of

(L
(i)
n )2 and to extract the square root of π2 rather than calculate π directly. Though

the text can be read as he first calculates π2, the final value of π stated in this

chapter is not
√
π2, but π calculated directly. This can be inferred since the two

approximations of π, one by means of (L
(i)
n )2 and the other directly, yield slightly

different values.
[13-15] D

(1)
n = An −An−1 is called the first difference 一差.

D
(1)
3 = 137.25830020304792191729804126448307428852499939688,

D
(1)
4 = 37.083683652481599641957134456626854384542189548493,

D
(1)
5 = 9.4516594990714831802143342058513782615257893158158,

D
(1)
6 = 2.3743341794766923179224932515507544081539058640818,

D
(1)
7 = 0.59429918869819100170937816619905078485194985674434,

D
(1)
8 = 0.14861955523563660001779254223424959225010068954789,

D
(1)
9 = 0.037157686661707135991416878856430011043180898889459.

By observing the values of D
(1)
n+1/D

(1)
n for n = 3, 4, · · · , 8, he states that this

sequence tends to 1/4. He erroneously writes in [14] that “dividing the difference

by the proceeding one”, he got the value 1/4. He also makes similar mistakes

in [17] and [20]. Based on the procedure of incremental divisor 増約術, he defines

A
(1)
n = An +D

(1)
n /(4− 1) to be the squares of first approximate circumferences 一遍
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約周冪 for n = 3, 4, · · · , 9.

A
(1)
3 = 933.33333333333333333333333333333333333333333333333,

A
(1)
4 = 983.01106693739722922306405501931076571803333252918,

A
(1)
5 = 986.70321173969005477324088720665221346791458546154,

A
(1)
6 = 986.94419652095816579954095466224509968843490803313,

A
(1)
7 = 986.95942226056992783003283426236231281213151941330,

A
(1)
8 = 986.96037645234195172633784073344412905588281726760,

A
(1)
9 = 986.96043612975673685912510473435677825059896823475.

[16-18] With the sequence A
(1)
n he repeats the similar calculation. D

(2)
n = A

(1)
n −A

(1)
n−1

is called the second difference 二差. Observing the numerical values of D
(2)
n+1/D

(2)
n

for n = 4, 5, · · · , 8, he finds that this sequence tends to 1/16. Based upon the

procedure of incremental divisor, he defines A
(2)
n = An + D

(2)
n /(16 − 1) to be the

squares of second approximate circumferences 二遍約周冪 for n = 4, 5, · · · , 9.
[19-20] With the sequence A

(2)
n he repeats the similar calculation. D

(3)
n = A

(2)
n −A

(2)
n−1

is called the third difference 三差. Observing numerical values D
(3)
n+1/D

(3)
n for n =

5, 6, · · · , 8, he finds this sequence tends to 1/64. Based on the procedure of

incremental divisor, he defines A
(3)
n = An +D

(3)
n /(64− 1) to be the squares of third

approximate circumferences 三遍約周冪 for n = 5, 6, · · · , 9.
[21-25] He continues the calculation repeatedly 5 times and finally obtains the good

approximate value of π2. Taking its square root, he finds the 42 digits approximate

value of π (see commentary [9]):

π = 3.14159 26535 89793 23846 26433 83279 50288 41971 68984.

[32-47] The procedure of residual division 零約術 refers to methods to approximate a

real number by a fractional number. Seki invented his method of residual division

but Takebe Kata’akira invented his own methods, which coincides with the so-

called Euclid’s algorithm. By the method of residual division due to Kata’akira, the

calculation goes as follows:
[32-34] Let b0 = 1 be the length of a diameter, which is called the original number

元数. First, divide π by b0 and get the quotient a1 and the remainder b1; in this

case, it amounts to that a1 is the integral part of π and b1 the fractional part:

π = a1 × b0 + b1, where a1 = [π] = 3 is called the first quotient 第一商 and b1 the

first inexhaustible 第一不尽.
[35] Second, decompose b0 by b1 and get the quotient a2 and the remainder b2:

b0 = a2× b1 + b2, where a2 = [b0/b1] = 7 is called the second quotient 第二商 and b2
the second inexhaustible 第二不尽.
[36] Third, b1 = a3 × b2 + b3, where a3 = [b1/b2] = 15 is called the third quotient 第
三商 and b3 the third inexhaustible 第三不尽.
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[37] Fourth, b2 = a4× b3 + b4, where a4 = [b2/b3] = 1 is called the fourth quotient 第
四商 and b4 the fourth inexhaustible 第四不尽.
[38] Fifth, b3 = a5 × b2 + b5, where a5 = [b3/b4] = 292 is called the fifth quotient 第
五商 and b5 the fifth inexhaustible 第五不尽.
[39] In general, he puts bn−1 = an+1 × bn + bn+1, where an+1 = [bn−1/bn].
[40-41] Let k1 be the first rate of the diameter 第一径率 and s1 the first rate of the

circumference 第一周率; that is, k1 = 1, s1 = a1 = 3. Because s1/k1 < π, k1 and s1
are called the first weak rates 一等弱率.
[42] Let k2 = k1a2 = 1 · 7 = 7 and s2 = s1a2 +1 = 3 · 7+ 1 = 22. Because s2/k2 > π,

k2 and s2 are called the second strong rates 二等強率.
[43] Let k3 = k2a3 + k1 = 7 · 15 + 1 = 106 and s3 = s2a3 + s1 = 22 · 15 + 3 = 333.

Because s3/k3 < π, k3 and s3 are called the third weak rates 三等弱率.
[44] k4 = k3a4 + k2 = 106 · 1 + 7 = 113 and s4 = s3a4 + s3 = 333 · 1 + 2 = 335.

Because s4/k4 > π, k4 and s4 are called the fourth strong rates 四等強率.
[45] Let kn+1 = knan+1 + kn−1 and sn+1 = snan+1 + sn−1. Then we have

s1/k1 < s3/k3 < s5/k5 < · · · < π < · · · < s6/k6 < s4/k4 < s2/k2;

this fact is expressed by saying the rates are strong and weak alternatively.

[48] According to Seki’s original procedure of residual division, the calculation of the

rates goes as follows: 3
1(< π), 3+4

1+1 = 7
2(> π), 7+3

2+1 = 10
3 (> π), 10+3

3+1 = 13
4 (> π),

13+3
4+1 = 16

5 (> π), 16+3
5+1 = 19

6 (> π), 19+3
6+1 = 22

7 (> π), 22+3
7+1 = 25

8 (< π), 25+4
8+1 = 29

9 (> π).
[53] Here byō 秒 means 1/60 minutes.
[63] The Jiu Shu 九数 refers to the names of nine chapters of the Jiuzhang Suanshu.

[65] Liu Xin (劉歆, ca. 50 – 23 BC), Zhang Heng (張衡, 78–139), Liu Hui (劉徽, ca.

3 c.), Wang Fan (王蕃, 228 – 266), and Pi Yanzong (皮延宗, ca. 5 c.) are Chinese

mathematicians. In the original text, Wang Fan is erroneously written as Wang

Shen/Ō Shin 王審.
[67] The Song Kingdom 宋 is a Chinese Kingdom (420 - 479).
[68] 1 jō 丈 is 10 shaku, i.e., 100 sun. 1 oku 億 = 108. This means he considered a

number with 8 or 9 digits. The upper bound is 3.1415927 jō. Here byō means shi.

1 byō = 1 shi = 10−4 sun. The lower bound is 3.1415926 jō.
[72] Sui Zhi/Zui shi 隋志 refers the monograph on calendar of Sui Shu 隋書, the

Book of the Sui dynasty.

Comments on Chapter 12

In this chapter, Takebe Katahiro states three formulas for an inverse trigonometric

function.
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Let t = c/d. As we have (s/2)2 = d2(arcsin
√
t)2, the formulas (18), (20), and

(21) below give the following approximation formulas of f(t) = (arcsin
√
t)2:

f(t) ≈ t(1 +
1

3
t(1 +

8

15
t(1 +

9

14
t(1 +

32

45
t(1 +

25

33
t(1 +

72

91
t)))))), (8)

f(t) ≈ t(1 +
1

3
t(1 +

8

15

t

1− t
(1− 5

14

t

1− t
(1− 12

25

t

1− t
(1 +

223

398

t

1− t
))))), (9)

and

f(t) ≈ t(1 +
1

3
t(1 +

8

15

t

1− 9

14
t
(1 +

43

980

t2

1− 1696

1419
t+

6743008

26176293
t2
))). (10)

The above forms of mathematical expression were standard notation in the Japanese

mathematics of the Edo period and they were convenient in the numerical calculation

on the Japanese abacus (see e.g., [Ogawa2000]).

The structure of Chapter 12 is as follows: [1-98] the first formula (8); [1-7] philosophy of

a back arc; [8-12] calculation of the definite half back arc; [13-19] calculation of the first

definite difference and its approximations in a fractional expression; [20-22] comments

on an old method; [23-27] calculation of the second definite difference and its approxima-

tions in a fractional expression; [28-32] calculation of the third definite difference and its

approximations in a fractional expression; [33-37] calculation of the fourth definite dif-

ference and its approximations in a fractional expression; [38-42] calculation of the fifth

definite difference and its approximations in a fractional expression; [43-47] calculations

of the sixth definite difference and its approximations in a fractional expression; [48-49]

calculations of the sixth approximate difference; [50] table of these numerical values;
[51-59] statement of the original procedure; [60-64] comments on Seki’s 4-multiplication

procedure; [65-73] inductive inference of the coefficients and its results; [74-90] argument

on inexhaustible numbers; [91-98] comments on the first formula (8);
[99-115] the second formula (9); [99-108] statement of the second formula; [109-115]

evaluation of the formula and a comment on an old method;
[116-172] the third formula (10); [116-121] repetition of the calculation of the second

definite difference; [122-129] calculation of the approximate coefficient of the sagitta;
[130-132] calculation of the third definite difference; [133-150] calculation of the approx-

imate coefficient of the square of the sagitta; [151-152] calculation of the third approx-

imate difference of 4-multiplication; [153-156] general method for further calculations;
[157] table of the numerical values obtained by the above method; [158-168] statement

of the third formula (10); [169-171] comment on the formula; [172-176] closing remarks.

[1-98] The first formula
[5-7] Suppose we are given a circle of diameter d = 10. Let s be the length of the

back arc with sagitta c.
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As in the case of the calculation of the circumference, using the 5 operations

(addition, subtraction, multiplication, division and the extraction of square roots)

Japanese mathematicians of the 18c century could calculate the arc length s numer-

ically once the sagitta c is given.

θ

d

c

half back arc s/2

Seki Takakazu sought to find a “formula” which gives the approximate value of the

arc length s when the sagitta c is given. Using the arc length s for c = 1, 2, 3, 4, 4.5.

In the Katsuyō Sanpō, Seki obtained the formula:

1132 × 1002(d− c)5s2 = 5107600cd 6 − 23835413c2d5 + 43470240c3d4

− 37997429c4d3 + 15047062c5d2

− 1501025c6d− 281290c7.

(11)

If we approximate s by (11), the error is roughly of the order of 10−6. In this sense

Seki’s approach was successful. But Takebe Katahiro was not satisfied by this result.
[8-9] (s/2)2 is called the square of the definite half back arc. In the modern notation,

(s/2)2 = (d arcsin(
√

c/d))2. The Japanese mathematicians could calculate (s/2)2

numerically once c was given numerically. For example, (s/2)2 = 10.3523419254547

for c = 1 and (s/2)2 = 1.003355122621573 for c = 0.1. (We assume d = 10.)

Contrary to Seki’s investigation, Takebe considered smaller values of c and cal-

culated the corresponding arc length s. Observing the values carefully, he tried to

approximate (s/2)2. In doing so, he found that results improved with decreasing

c. Finally, he took the sagitta as small as c = 10−5. Takebe determines (s/2)2

numerically for c = 10−5 using repeatedly the procedure of incremental divisor:

(s/2)2 = 1.0000003333335111112253969066667282347769479595875× 10−4,

which he calls the “definite half back arc 定半背冪”.
[13-14] Its first approximation is 10−4, which Takebe observes to equal cd = 10−4.
[15-16] He calls cd the “approximate half back arc 汎半背冪” and t1 = (s/2)2− cd the

“first definite difference 一定差”.
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[17-19] He finds t1 = 0.3333335111112253969066667282347769479595875× 10−10and

observes the order of t1 is equal to the order of c2 = 10−10. Then he calculates the

ratio t1/c
2 = 0.333333511111. By the procedure of residual division, he finds this

decimal is approximated by the fraction 1/3.

The procedure of residual division or the “reiyaku” method is a method to convert

a decimal to a fraction. Takebe Katahiro claims that his elder brother Takebe

Kata’akira improved Seki Takakazu’s “reiyaku” method given in the Katsuyō Sanpō

because it was not efficient. Takebe Kata’akira’s method was the same as Euclid’s

algorithm. The “reiyaku” method has been studies by many authors [Shibata1935],

[Shibata1935b], and [Hayashi1915] (collected in [Hayashi1937]).
[23] Takebe defines the “first approximate difference 一汎差” h1 by

h1 := c2 × (1/3) (12)

and finds h1 = 0.3333333333333333333333333333333333333× 10−10.
[24] Next he defines the “second definite difference 二定差” t2 := t1 − h1.
[25-27] He finds t2 = 0.1777778920635733333949014436146262542 × 10−16and ob-

serves that the order of t2 is equal to the order of h1× (c/d) and calculates the ratio

t2/(h1× (c/d)) = 0.53333367619. By the procedure of residual division, he finds this

decimal is approximated by the fraction 8/15.
[28] Then he defines the “second approximate difference 二汎差” h2 by

h2 := h1 × (c/d)× (8/15) (13)

and finds h2 = 0.1777777777777777777777777777777777777× 10−16.
[29] Next he defines the “third definite difference 三定差” t3 := t2 − h2.
[30-32] He finds t3 = 0.1142857955556171236658368484764 × 10−22 and he observes

that the order of t3 is equal to the order of h2 × (c/d) and calculates the ratio

t3/(h2× (c/d)) = 0.6428576 slightly strong, where slightly strong means the number

is between 0.6428576 and 0.64285761. By the procedure of residual division, he finds

this decimal is approximated by the fraction 9/14.
[33] Then he defines the “third approximate difference 三汎差” h3 by

h3 := h2 × (c/d)× (9/14) (14)

and finds h3 = 0.1142857142857142857142857142857× 10−22.
[34] Next he defines the “fourth definite difference 四定差” t4 := t3 − h3.
[35-37] He finds t4 = 0.812699028379515511341907× 10−29 and he observes that the

order of t4 is equal to the order of h3 × (c/d) and calculates the ratio t4/(h3 ×
(c/d)) = 0.71111164983. By the procedure of residual division, he finds this decimal

is approximated by the fraction 32/45.
[38] Then he defines the “fourth approximate difference 四汎差” h4 by

h4 := h3 × (c/d)× (32/45) (15)
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and finds h4 = 0.812698412698412698412698× 10−29.
[39] Next he defines the “fifth definite difference 五定差” t5 := t4 − h4.
[40-42] He finds t5 = 0.615681102812929209 × 10−35. He observes that the order of

t5 is equal to the order of h4 × (c/d) and calculates the ratio t5/(h4 × (c/d)) =

0.75757635697. By the procedure of residual division, he finds this decimal is ap-

proximated by the fraction 25/33.
[43] Then he defines the “fifth approximate difference 五汎差” h5 by

h5 := h4 × (c/d)× (25/33) (16)

and finds h5 = 0.615680615680615681× 10−35.
[44] Next he defines the “sixth definite difference 六定差” t6 := t5 − h5.
[45-47] He finds t6 = 0.487132313528×10−41. He observes that the order of t6 is equal

to the order of h5 × (c/d) and calculates the ratio t6/(h5 × (c/d)) = 0.79120943736.

By the procedure of residual division, he finds this decimal is approximated by

the fraction 72/91.
[48] Then he defines the “sixth approximate difference 六汎差” h6 by

h6 = h5 × (c/d)× (72/91) (17)

and finds h6 = 0.487131915703× 10−41.
[49] He stops the calculation at this stage, then states the calculation can be continued

similarly.
[51-59] In this formal statement of procedure, he repeats the definitions (12), (13),

(14), (15), (16) and (17) and states the formula to represent the square of the back

arc (s/2)2 in terms of sagitta c and diameter d:(s
2

)2
− cd = t1 = h1 + t2 = h1 + h2 + t3 = · · ·

= h1 + h2 + h3 + h4 + h4 + h5 + h6( + t7).

Substituting the definitions in this formula we obtain(s
2

)2
≈ cd+

1

3
c2 +

1

3

8

15

c3

d
+

1

3

8

15

9

14

c4

d2
+

1

3

8

15

9

14

32

45

c5

d3

+
1

3

8

15

9

14

32

45

25

33

c6

d4
+

1

3

8

15

9

14

32

45

25

33

72

91

c7

d5
.

(18)

[65-72] Takebe observes carefully the denominators and the numerators of the coef-

ficients separately and deduces recursively that the fraction which should be multi-

plied to the (i−1)-th term to obtain the i-th term (i ≥ 2) is given by
2i2

(2i+ 1)(i+ 1)

when i is even, and by
i2

(2i+ 1)(i+ 1)/2
when i is odd. In this way, Takebe finds

the calculation can be continued as many steps as one wishes using the following

algorithm:
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E := c2/3;

S := cd+ E;

for i := 2 to N do begin

if i mod 2 = 0 then

begin P := (2i+ 1)(i+ 1); Q := 2i2 end

else

begin P := (2i+ 1)(i+ 1)/2; Q := i2 end;

E := E · Q
P

· c
d
;S := S + E

end;

It can be said that formula (18) was the first infinite series expansion in the history

of Japanese mathematics. In fact, it coincides with the Taylor expansion of the

trigonometric function (arcsinx)2 in x at x = 0.

Note that (18) was later reformulated as(s
2

)2
= cd

{
1 +

22

3 · 4

( c

d

)
+

22 · 42

3 · 4 · 5 · 6

( c

d

)2
+

22 · 42 · 62

3 · 4 · 5 · 6 · 7 · 8

( c

d

)3
+ · · ·

}
(19)

in the Enri Kohaijutsu, where (19) was derived by a more algebraic method than

the above.
[95] This sentence refers to the main procedure referred below.

[99-115] The second formula

[100] Let c be the sagitta and d the diameter. cd is called the square of the approxi-

mate half back arc.
[101] +s1 = c2 × 1/3.
[102] +s2 = s1 × c/(c− d)× 8/15.
[103] −s3 = −s2 × c/(c− d)× 5/14.
[104] +s4 = +s3 × c/(c− d)× 12/25.
[105] −s5 = −s4× c/(c− d)× 223/396. The last denominator was erroneously stated

as 398 in the text.
[107] (s/2)2 = cd+ s1 + s2 − s3 + s4 − s5.
[100-107] In sum, the second formula was as follows:(s

2

)2
≈ cd+

1

3
c2 +

1

3

8

15

c3

d− c
− 1

3

8

15

5

14

c4

(d− c)2
+

1

3

8

15

5

14

12

25

c5

(d− c)3

− 1

3

8

15

5

14

12

25

223

396

c6

(d− c)4

(20)

[113] Takebe Katahiro abandoned the second formula saying its precision did not

increase very much even with the increased number of multipliers.

[116-172] The third formula
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[117] Let d = 10 be the diameter and c = 10−5 the sagitta. The definite back arc [i.e.,

length of the back arc] is denoted by s. (s/2)2 is called the square of the definite

half back arc. cd = 10−4 is called the square of the approximate half back arc.
[118] t1 = (s/2)2 − cd is called the first definite difference.
[119] h1 = c2/3 is called the first approximate difference.
[120] +t2 = t1 − h1 is called the second definite difference.
[122-124] t2/(h1 × c/d) = 5.333367619× 10−1 = 8/15.
[130-131] h̃2 = (h1 × c)/(−c × 9/14 + d) × 8/15 is called the cube of the second

approximate difference.
[132] t̃3 = t2h̃2 is called the third definite difference.
[133-134] t̃3/(h̃2 × c2/d2) = 4.387760346325× 10−2 ≃ 43/980.
[138] NPC = (h̃2× c2× 43/980)/t̃3− d2 = −1.9520763527249924963× 10−4 is called

the Numerator of the Product Coefficient 段積実.
[140-142] −NPC/cd = 1.19520763528240024963 ≃ 1696/1419.
[143] A = NPC − cd× 1696/1419 = 2.5759981223733× 10−12.
[145-147] A/c2 = 0.025759981223733 ≃ 6743008/2641762913.
[151-152] h̃3 = (h̃2 × c2)/(c2 × 6743008/26176293 + d2 − cd× 1696/1419)× 43/980 is

called the third approximate difference of 4-multiplication.

[158-168] The third formula is written in Chinese.
[158] cd is called the square of the approximate half back arc.
[159] h1 = c2/3 is called the first difference.
[160-162] h̃2 = (h1 × c)/(−c× 9/14 + d)× 8/15 is called the second difference.
[163-165] h̃3 = (h̃2 × c2)/(c2 × 6743008/26176293 + d2 − cd× 1696/1419)× 43/980 is

called the third difference.
[166] The final formula is as follows: (s/2)2 = cd + h1h̃2 + h̃3. We can rewrite it as

follows: (s
2

)2
≈ cd+

1

3
c2 +

1

3
· c3

d− 9

14
c
· 8
15

+
1

3
· c5

d− 9

14
c
· 1

d2 − 1696

1419
cd+

6743008

26176293
c2
· 8
15
· 43
980

.

(21)

If we calculate following Takebe Katahiro’s instruction in the Tetsujutsu Sankei,

we cannot obtain the fraction 6743008/26176293. But if we calculate without ex-

panding into decimals by the procedure of residual division, we can get this value.

In this sense, the fraction given here is right but it is unclear how Takebe Katahiro

obtained this value. Mr. Yokotsuka Hiroyuki showed that this fraction can be

obtained if we take c = 10−13 instead of c = 10−5. (See [Yokotsuka2004] and

[Yokotsuka2006].) As the value c = 10−13 for the sagitta was utilized in the Sanreki

Zakkō ([SatoS1995]), we can conjecture Takebe Katahiro calculated with this value.
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Takebe Katahiro said that he utilized the value c = 10−9 for the calculation for the

third approximation formula instead of c = 10−5 in calculating 90 digits. But even

with c = 10−9 we cannot obtain this fraction. The Sanreki Zakkō had been studied

for many years ([Fujiwara1941], [Fujiwara1945], etc.). But it was Yokotsuka who

first obtained some meaningful results concerning its relation with the calculation

of arc length in the Tetsujutsu Sankei.

Takebe Katahiro could not obtain these two formula algorithmically, but simply

stated how to find the first few terms.

These two formulas were identified in the early stages of research on the history

of Japanese mathematics (see, e.g., [Hayashi1911].) but their meaning was not

clear. Recently one of the authors of this commentary proposed an interpretation

[Morimoto2003], which we proceed to explain.
[71] It is most probably that the Koritsu is a chapter of the Taisei Sankei.

Comments on One Chapter on a Theory of Proper Character

The last Chapter is a summary of Takebe’s philosophy on mathematics and math-

ematicians. He deliberates the psychological relationship between the character of

mathematics and that of mathematicians and concludes that one can reach the so-

lution of a mathematical problem if both correspond with each other but that one

cannot if not. He also insists that the character of a mathematicians can never be

changed even if one studies mathematics hard. It is essential for him to be in the

Way of Mathematics.

We don’t comment on this Chapter anymore because it does not contain

any mathematical problems specifically. We refer the reader to [Murata1982],

[Horiuchi1994b], and [Ogawa2007].

Comments on Appendix

[3] Three sides of a triangle are called large, middle, and small.
[4] The middle line is a line perpendicular to the large side passing through the

opposite vertex. A regulated number means a rational number.
[42] The year kinoto mi 乙巳 is one in the sexagenarian cycle. This year corresponds

with 1725 AD.

VII Comments on Units

• sen 銭 is a unit for silver money. (Chapter 1)

• koku 斛 and to 斗 are units for grain.

1 koku = 10 to. (Chapter 1)

• bu 歩 is a unit for length and for area. 1 bu is approximately equal to 1.8 m.

1 [squared] bu is approximately equal to 3.3 m2. (Chapter 2 and 10)
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• sun 寸 is the basic unit for length and is approximately equal to 3 cm.

1 jō丈 = 102 sun 寸.

1 shaku 尺 = 10 sun 寸.

1 sun 寸.

1 bu 分 = 10−1 sun 寸. Distinguish 1 bu 分 from 1 bu 歩.

1 ri 厘 = 10−2 sun 寸. (Chapter 3)

1 mō 毛 = 10−3 sun 寸.

1 shi 糸 = 10−4 sun 寸.

1 kotsu 忽 = 10−5 sun 寸.

1 bi 微 = 10−6 sun 寸.

1 sha 沙 = 10−8 sun 寸.

1 jin 塵 = 10−9 sun 寸.(Chapter 8, 11, 12)

1 byō渺 = 10−12 sun 寸. (Chapter 12)

• tan 端 and ri 厘 are units for length of cloth.

1 tan = 10 ri. (Chapter 5)

VIII Comments on Counting Board

VIII.1 Counting Rods

In traditional Japanese mathematics, as in traditional Chinese mathematics, num-

bers were mostly integers or finite decimals. Positive numbers were represented by

red counting rods and negative numbers by black counting rods. (See pages 273 and

267.) Counting rods representing the single digits 1 through 9 were placed in an

appropriate box on the counting board and arranged as follows:

1 2 3 4 5 6 7 8 9

vertical form

horizontal form

The vertical forms were used for every other non-zero digit as in 1, 100, 10000,

etc., while the horizontal forms were used for the remaining non-zero digits as in

10, 1000, 100000, etc. In this way, in representing numbers with more than a single

digit on a counting board, neighboring digits could be easily distinguished. (0 digits

were represented by recognizably empty spaces.)

If red ink were not available, negative numbers were denoted with a slash:

1 2 3 4 5 6 7 8 9

vertical form H H H H H H H H H

horizontal form H H H H H H H H H

In the text, the numbers were mostly written by Chinese characters, which tran-

scribed in corresponding arabic numbers, but the numbers on the counting board

were written using counting rods (Chapters 2 and 6).
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VIII.2 Counting Board

A counting board was originated from Ancient China and still one of the most im-

portant calculating tools in Takebe’s day. The following is an example of a counting

board.
103 102 10 1

Quotient

Reality

Square

Side

Corner

Each row was named by a single Chinese character shang 商, shi 実, fang 方, lian

廉, and yu 隅 (see, for example, [Martzloff1987]) and was called shō, jitsu, hō, ren

and gū in Japanese. In our translation, we employ English names, the Quotient,

the Reality, the Square, the Side and the Corner, translating literally the respective

Chinese characters.

VIII.3 Procedure of Root Extraction

The counting board was used, in traditional Chinese mathematics, to calculate the

square root or the cube root of a number and more generally to solve numerically

an algebraic equation with integral coefficients.

The procedure of root extraction had been well known in China since the Jiuzhang

Suanshu, which is one of first Chinese mathematics books. At first it was applied

to extract a square root or a cubic root. Later in the Song dynasty in China it was

elaborated to handle with algebraic equations of higher degree. The procedure of

root extraction is sometimes called Horner’s method (introduced in the 19th century,

in England) but its discovery was much earlier in China. Japanese mathematicians

of the Edo period mastered this procedure completely and convinced that they could

solve numerically any algebraic equation once it was given. See the Sangaku Keimō

Genkai Taisei (Great Colloquial Commentary on the Suanxue Qimeng).

Note that, in the Fukyū Tetsujutsu the chapter on square root extraction is placed

before the chapter on the rule of element placement. This order is more coherent

logically than that in the Tetsujutsu Sankei.

An algebraic equation with numerical coefficients

a0 + a1(x− q) + a2(x− q)2 + a3(x− q)3 = 0 (22)

had a particular representation on the counting board. Beginning at the top, the

numbers q, a0, a1, a2, and a3 are placed in the Quotient row, in the Reality row,

in the Square row, in the Side row, and in the Corner row, respectively. We can

say that the cubic algebraic equation (22) was represented by the following column
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vector (which we call a configuration on the counting board).

q Quotient

a0 Reality

a1 Square

a2 Side

a3 Corner

(23)

For example, the quadratic equation (7) in Chapter 10 is represented as follows:

103 102 10 1

Quotient

black Reality

Square

red Side

Corner

For simplicity, we replace counting rods by corresponding Arabic numbers. For

example, the above configuration is represented as follows:

Quotient

−1166 Reality

0 Square

1 Side

0 Corner

or

Quotient

−1166 Reality

0 Square

1 Corner

(24)

As the highest coefficient was placed on the Corner row in the Edo period, the

quadratic equation like (7) was placed using the Reality, the Square and the Corner

rows. Mathematically speaking, a quadratic equation is nothing but a cubic equation

with null highest coefficients and we shall use both of configurations in (24).

Suppose we are given a cubic equation

a0 + a1x+ a2x
2 + a3x

3 = 0,

represented by the configuration

Quotient

a0 Reality

a1 Square

a2 Side

a3 Corner

(25)
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Whenever the Quotient row was increased by an amount q, the counting board was

manipulated from bottom to top three times (in the following from right to left three

times);

Quotient Reality Square Side Corner

0 a0 a1 a2 a3

q ((a3q + a2)q + a1)q (a3q + a2)q a3q 0

((a3q + a2)q + a1)q + a0 (a3q + a2)q + a1 a3q + a2 a3

(a3q + (a3q + a2))q a3q 0

(a3q + (a3q + a2))q

+(a3q + a2)q + a1

a3q + (a3q + a2) a3

a3q 0

a3q + a3q + (a3q + a2) a3

q ((a3q + a2)q + a1)q + a0

(a3q + (a3q + a2))q

+(a3q + a2)q + a1

a3q + a3q + (a3q + a2) a3

The purpose of this manipulation is to calculate a′0, a
′
1, a

′
2, a

′
3 in (26) from a0,

a1, a2, a3:

a0 + a1x+ a2x
2 + a3x

3 = a′0 + a′1(x− q) + a′2(x− q)2 + a′3(x− q)3 (26)

Now suppose we want to solve the equation

a0 + a1x+ a2x
2 + a3x

3 = 0 (27)

and that there is a solution between 10 and 100.

First step: Choose a natural number q among 10, 20, 30, · · · , 90 appropriately

so that |a′0| becomes smallest.

Second step: Choose q′ among 1, 2, 3, · · · , 9 so that |a′′0| in (28) becomes smallest:

a′0 + a′1(x− q) + a′2(x− q)2 + a′3(x− q)3

= a′′0 + a′′1(x− q − q′) + a′′2(x− q − q′)2 + a′′3(x− q − q′)3
(28)

The calculation of a′′0, a
′′
1, a

′′
2, a

′′
3 from a′0, a

′
1, a

′
2, a

′
3 is same as that of a′0, a

′
1, a

′
2, a

′
3

from a0, a1, a2, a3.

When the Reality row became empty (i.e. 0) after several steps, the number in

the Quotient row gives a root of the cubic equation (27). It was then said that “the

root was extracted” or “the counting board was divided to extract the root”. In this

way, the algebraic equation could be solved numerically digit by digit.

This procedure looks very complicated but it consists of one simple calculation

which can be seen if we write this procedure in a computer language. The Reality,
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Square, Side, Corner rows on the counting board may well be considered as being

registers of a computer. It is fundamental in Japanese mathematics to consider the

cubic equation (22) as the column vector (23), the component of which are registers.

Let us illustrate this procedure using equation (7) in Chapter 10, which is rep-

resented by configuration (24). First add q = 30 to the Quotient row and calculate

according to the following program:

a2 := a3 × q + a2, a1 := a2 × q + a1, a0 := a1 × q + a0

a2 := a3 × q + a2, a1 := a2 × q + a1

a2 := a3 × q + a2

(29)

Then the counting board looks as follows:

30 Quotient

−266 Reality

60 Square

1 Corner

(30)

Since a′0 = −266, a′1 = 60, a′2 = 1, configuration (30) tells us that

−1166 + x2 = −266 + 60(x− 30) + (x− 30)2.

Next add q′ = 4 to the Quotient row.

Now put a0 = a′0, a1 = a′1, a2 = a′2, a3 = a′3, and q = q′ = 4 and apply the

program (29). We will obtain the coefficients a′′0, a
′′
1, a

′′
2, and a′′3 such that:

a′′0 + a′′1(x− q − q′) + a′′2(x− q − q′)2 + a′′3(x− q − q′)3

= a′0 + a′1(x− q) + a′2(x− q)2 + a′3(x− q)3

= a0 + a1x+ a2x
2 + a3x

3.

At this stage, the counting board becomes:

34 Quotient

−10 Reality

68 Square

1 Corner

(31)

Configurations (31) on the counting board tells us that

−1166 + x2 = −10 + 68(x− 34) + (x− 34)2.

Therefore, −1166+342 = −10, that is, 342+10 = 1166. In other words,
√
1166 ≑ 34.
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The program (29) can be applied to the numerical calculation of the cube root,

or to the numerical solution of a cubic equation. Japanese mathematicians could

solve numerically any algebraic equation of any order generalizing the program (29).

Note that, if a0 = −N , a1 = D, a2 = 0, and a3 = 0, repeated applications of the

program (29) calculate the decimal expansion of the quotient N/D. In this sense,

the extraction of root was considered as a generalization of the division operation

and was called generalized division.

VIII.4 Counting Board Algebra

In the Song dynasty, the procedure of celestial element was invented and transmitted

to Japan by the Suanxue Qimeng (1299) of Zhu Shijie. Takebe Katahiro called this

procedure the rule of element placement, which is, in modern terminology, a method

to represent a polynomial of one variable by means of the counting board. In this

sense, this rule is sometimes called the counting board algebra.

Suppose we are given a polynomial

a0 + a1x+ a2x
2 + a3x

3, (32)

where a0, a1, a2, a3 are integers and x is an unknown variable. In the rule of element

placement, a0 is placed in the Reality row, a1 in the Square row, a2 in the Side row,

and a3 in the Corner row. This means that the cubic polynomial (32) is represented

by the following configuration on the counting board:

Quotient

a0 Reality

a1 Square

a2 Side

a3 Corner

(33)

When the Quotient row is empty, we abbreviate (33) as a column vector:


a0
a1
a2
a3

. If
a3 = 0, we omit a3; if a2 = 0 and a3 = 0, we omit a2 and a3; if a1 = 0, a2 = 0 and

a3 = 0, then the vector is considered as a scalar:
a0
a1
a2
0

 =

a0
a1
a2

 ,


a0
a1
0

0

 =

[
a0
a1

]
,


a0
0

0

0

 = [a0] = a0.

Note that an actual number would be represented on the counting board by

placing counting rods in a single row (the Reality row), using alternating vertical
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and horizontal forms of counting rods as mentioned earlier. On the other hand,

virtual quantities (that is, those represented by polynomials in which an unknown

variable, x, appears explicitly) were represented by column vectors with at least two

entries.

In the Kai Indai no Hō (ca.1685), Seki Takakazu described the addition, subtrac-

tion and multiplication for column configurations. Namely, addition, subtraction

and scalar multiplication are defined in the usual way for column vectors:
a0
a1
a2
a3

±

b0
b1
b2
b3

 =


a0 ± b0
a1 ± b1
a2 ± b2
a3 ± b3

 , c


a0
a1
a2
a3

 =


ca0
ca1
ca2
ca3

 .

Multiplication of a configuration by x, that is, by the vector

[
0

1

]
is defined as a

downward shift operator:

[
0

1

]
×


a0
a1
a2
a3

 =


0

a0
a1
a2
a3

 .

Multiplication of other column configurations can be computed using known rules,

such as distributivity, associativity, commutativity and bi-linearity. For example[
a0
a1

]
×

[
b0
b1

]
= (a0 + a1

[
0

1

]
)× (b0 + b1

[
0

1

]
)

= a0b0 + (a0b1 + a1b0)

[
0

1

]
+ a1b1

0

0

1


=

 a0b0
a0b1 + a1b0

a1b1

 .

Let us illustrate four steps of the rule of element placement using the example

given in Chapter 2. Suppose a rectangle be given. The sum of the short side and

the ling side is equal to 27 and the area is equal to 180. The problem is to find the

short side.

The first step is to place one rod in the Square row and consider the configuration[
0

1

]
as the virtual short side. (In modern terminology, let x be the short side.)
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Note that in ancient China, the Reality row was called the Great Ultimate (taiji)

and the Square row the Celestial Element, one of four Elements (siyuan); Heaven,

Earth, Human, and Substance.

Hence the first operation is stated saying “to place one rod in the celestial ele-

ment” or “to place the celestial element unit”.

The second step is to apply several operations to this configuration: The config-

uration

[
27

−1

]
represents the virtual long side and the configuration

 0

27

−1

 repre-

sents the virtual area. (In modern terminology, 27− x represents the long side and

x(27− x) = 27x− x2 represents the area.)

The third step is called cancellation: The virtual area is canceled by the given

value which is placed in the Reality row
[
180

]
to form the equation

−180
27

−1

. (In

modern terminology, we form the equation by setting (27x− x2)− 180 = 0; that is,

−180 + 27x− x2 = 0.)

The fourth step is to find a solution of this quadratic equation by the procedure

of extraction, which was explained above.

VIII.5 Evaluation of a polynomial

Today when we want to calculate the value of a polynomial

f(x) = a0 + a1x+ a2x
2 + a3x

3

at x = q, we substitute x with q to obtain f(q). But in traditional Japanese

mathematics, the equation was represented on the counting board:

Quotient

a0 Reality

a1 Square

a2 Side

a3 Corner

(34)

Putting q in the Quotient row they applied the procedure of extraction with q and

obtained the value f(q) in the Reality row. For example, if they wanted to calculate

the values of f(x) at x = 0.1, 0.2, · · · , 0.9, 1, first placing 0.1 in the Quotient row

they applied the procedure of extraction with 0.1 to the board (34) and obtained
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f(0.1) in the Reality row. The counting board becomes

q Quotient

a′0 Reality

a′1 Square

a′2 Side

a′3 Corner

(35)

Using this board (35) they added q′ = 0.1 to the Quotient row and applied the

procedure of extraction with q′ = 0.1. Then they obtained f(0.2) in the Reality row

on the counting board

q + q′ Quotient

a′′0 Reality

a′′1 Square

a′′2 Side

a′′3 Corner

(36)

Repeating this calculation, they found the values f(0.1), f(0.2), f(0.3), · · · succes-
sively. Our guess is that Takebe Katahiro found the Square row becomes empty

when the Reality row becomes the smallest (or the largest). Then he formulated the

calculation of the Square row in the procedure of extraction and found the equation

V ′(y) = 0 without knowing differentiation.

Chapter 6 can be considered the first instance in Japanese mathematics which

essentially utilized the fact that the derivative a0 + a1x+ a2x
2 + a3x

3 is equal to

a1 + 2a2x+ 3a3x
2. (37)

But in the world of Japanese mathematics there was no Cartesian plane, conse-

quently no notion of the graph of a function. They could not visualize the analytic

expression of a gradient. This means, the mathematicians of the Edo period could

not understand (37) as the derivative.

Takebe Katahiro claims in this chapter that he found (37) by numerical exper-

iment. In all likelihood he calculated the values of f(x) at various points by the

above mentioned method and found that the Square row vanished when the Reality

row attained the maximum (or the minimum).

He already developed the “bōshohō” (method of side-writing) to describe the

procedure to calculate the Square row once given a new increment in the Quotient

row.

With present day knowledge, it is trivial that the Side row vanishes when the

Reality row become extreme. In fact, (26) is nothing but the Taylor expansion

f(x) = f(q) + f ′(q)(x− q) +
f ′′(q)

2!
(x− q)2 +

f ′′′(q)

3!
(x− q)3. (38)
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cedures in the “Kenki Sanpō”), 数学史研究 (Journal of History of Mathematics,

Japan), 175, 176, 2002-2003, pp. 19-72.

[Fujiwara1941] Fujiwara Matsusaburō (藤原 松三郎): 「建部賢弘の弧率と我国最
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の研究」(“The Kohai Setsuyaku Shū considered as a work of Takebe Katahiro

and its relation with the Kohairitsu and the Kohaijutsu — Takebe Katahiro’s

Research on the Circle Principle during the Periods Genroku and Kyōhō”), 数
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Kyōhō period 享保, 164, 208
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Nakane Jōemon 中根上右衛門, 181, 206

Pi Yanzong/Hi Ensō 皮延宗, 191, 226
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Saishū Kō 歳周考 (A Consideration on

the Period of Years), 160
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ing Calendar), 168, 180

Suanfa Tongzong/Sanpō Tōsō 算法統宗
(Systematic Treatise on Mathe-

matical Methods), 159

Suanxue Qimeng/Sangaku Keimō 算学

250
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啓蒙 (Introduction to Mathemat-

ics), 159, 168, 239

Sūgaku Jōjo Ōrai 数学乗除往来 (Text

on Multiplication and Division

in Mathematics), 159

Sui Shu/Zui sho 隋書 (the Book of Sui

dynasty), 190

Sui Zhi/Zui shi 隋志 (Monograph on Cal-

endar in the Book of the Sui dy-

nasty), 191, 226

Taisei Sankei 大成算経 (Great Accom-

plished Mathematical Treatise),

159, 210, 214, 224, 233

Takebe-shi Denki 建部氏伝記 Biography

of the Takebe, 160

Tetsujutsu Sankei 綴術算経 (Mathemat-

ical Treatise on the Technique

of Linkage), 157, 159–163, 208,

223, 232, 233, 235

Xuanmingli/Senmei reki 宣明暦 (the Xu-

anming calendar), 181



Index of Subjects

abacus そろばん soroban, 165

accumulated years from the original date

of the universe積年 sekinen, 181

accumulation 積 seki, 168

additive first difference加一差 ka ichi sa,

198

additive fourth difference 加四差 ka shi

sa, 198

additive second difference 加二差 ka ni

sa, 198

appropriate or not 整不整 seifusei, 180

approximate coefficient 汎段数 han-

dansū, 200

arc constant 弧数 kosū, 164

area積 seki, 2 dimensional accumulation,

168, 170, 186

arithmetic removal 算脱 sandatsu, 164,

181, 216

back arc 弧背 kohai, 191

[base] area of the cone 錐面の積 suimen

no seki, Literally, accumulation

of conic surface, 182

celestial element 天元 tengen/tianyuan,

170, 208, 239, 241

character 質 shitsu, 203

choice of the step child 継子立 mamako

date, 180

circle constant 円数 ensū, 164

circle rates 円率 enritsu, 185

circular area 円積 enseki, 184

circular ratio = circular circumference

rate / diameter rate = π., 183,

219

coefficient 段数 dansū, 175

common divisor 約法 hakuhō, 175

in the conforming order 順算して junsan

shite, 180

to contract [an arrangement] 畳約す
chōyaku su, 175

Corner [row] 隅 gū, 168

counting backward 逆算して gyakusan

shite, 180

counting board 算盤 sanban, 165, 168

cubic accumulation 立積 ryūseki, 173

cubic case difference divisor立限差法 ryū

gensahō, 174

cubic difference 立差 ryūsa, 174

cubic sum 立積 ryūseki, 174

cumbersome fraction 数の繁き sū no

shigeki, 172

to decompose repeatedly砕き累ぬ kudaki

kasanu, 165

decomposition 碎抹 saibatsu, 164, 184

definite back arc 定背 tei-hai, 192

definite difference 定差 tei-sa, 175

definite rate 定率 tei-ritsu, 198

definite sum difference 定積差 tei-seki sa,

174

diameter 径 kei or watari, 192

difference of degrees in the movement of

the sun and the moon 躔離の差
度 denri no sado, 175

different arrangements 別隊 betsutai, 180

direct 順 jun, 167

direct 順 jun (reason → procedure →
numbers), 163

distorted and inconsistent 偏駁 henbaku,

164

distorted character 質の偏駁 shitsu no

henbaku, 183

divisor 約法 yakuhō, 171

element placement 立元 ryūgen, 164,

168–171, 178, 180, 208, 215, 216,

240

252
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elementary 軽浅 keisen, 173

equation 度 nori, 170, 179

equation to be extracted 開方の式 kaihō

no shiki, 169

equation with subordinate帯従の式 taijū

no shiki, 170

evidence 拠 yoridokoro, 168, 171, 176,

181

extreme case of the Square row 方級の極
限 hōkyū no kyokugen, 178

extreme number 極限の数 kyokugen no

sū, 180

extreme value 極限 kyokugen, 193

extreme volume 極積 kyoku seki, Liter-

ally, extreme accumulation, 178

extremely large極めて多き kiwamete ōki,

178

fifth approximate difference 五汎差 go

han-sa, 194

fifth definite difference 五定差 go tei-sa,

194

Finding Differences 招差 shōsa, 164

first approximate difference 一汎差 ichi

han-sa, 193, 199

first definite difference 一定差 ichi tei-sa,

192, 199

first definite sum 第一の定積 daiichi no

tei-seki, 173

first number to extract the Side row廉級
を開く一変の数 renkū wo hiraku

ichihen no sū, 178

first number which ought to extract the

Square row 応に方級を開くべき
一遍の数。masani hōkyū wo hi-

rakubeki ippen no sū, 178

of foolish character 質の魯か shitsu no

oroka, 183

form and character 形質 keishitsu, 167,

191

four Elements 四元 shigen/siyuan, 241

fourth approximate difference 四汎差 shi

han-sa, 194

fourth definite difference 四定差 shi tei-

sa, 193

general procedure of square piles 方垜の
総術 hōda no sōjutsu, 175

generally speaking 凡そ oyoso, 173

Great Ultimate 太極 taikyoku/taiji, 241

intermediate ratios 間率 kanritsu, 190

inverse 逆 geki, 167

inverse 逆 geki (reason ← procedure ←
numbers), 163

investigation 探索 tansaku, 168

linkage 綴 tetsu, 163

main number 本数 honsū, 172

main procedure 元術 moto jutsu, 202

man’s character 人質 jin shitsu, 163

manipulation of moving over orders 諸級
進退の技 shokyū shintai no waza,

186

marvelous 玄妙 genmyō, 168

Mathematics 算 san, Science of calcula-

tion, 163, 166, 181

Mathematics 算法 sanpō, 167

meaning of procedure 術意 jutsui, 178

multiplication and division乗除 jōjo, 164

multiplication chant 釈九数の法の辞
sekikyūsū no hō no kotoba, 165

mysterious method 神法 shinpō, 168

native straight character 生まれ得たる粋
質 umare etaru suishitsu, 171

nine-division chant 九帰除法の辞 kuki-

johō no kotoba, 166

Norm [row] 法 hō, 166, 210

not settled 整わず totonowazu, 172

not settled 不整 fusei, i.e., not a round

number., 177

number 数 sū, 163, 164
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number at the Norm row 法数 hōsū, 166

number at the Reality row 実数 jitsusū,

166

number of area 積数 seki sū, Literally,

number of accumulation, 182

number of circular ratio 円周の法の数
enshū no hō no sū, Literally,

number of circular divisor, 182

number of cubic accumulation 再自乗の
数 saijijō no sū, cubic number,

173

number of the base 元数 moto sū, 192

numerator of the product coefficient段積
実 dansekijitsu, 200, 201

numerical and reasonable [evidence]数理
sûri , 164, 167

numerical evidence 拠数 sū niyoru, 157,

161, 164, 176, 203

numerical quantity 員数 ensū the formal

form of 数 sū, 163

to operate in a relaxed manner 安行に住
す ankō ni jūsu, 184

original formula 元式 moto shiki, 178

original procedure 原術 genjutsu, 195

parallelepiped 直堡 chokuho, 178

Parallelepipeds, Maximal value of 直堡
chokuho, 164

path of investigation探索の径 tansaku no

michi, 176

pebble 棋子 kishi, 180

prime number すえの数 sue no sū, 172

procedure 術 jutsu, 164

procedure of decremental divisor 損約の
術 sonyaku no jutsu, 182, 218

procedure of extraction 開方術 kaihō

jutsu, 169

procedure of incremental divisor 増約の
術 zōyaku no jutsu, 218

procedure of mutual removal 互去の術
gokyo no jutsu, 172

procedure of parallelepiped 直堡の術
chokuho no jutsu, 179

procedure of repeated incremental divi-

sor 累遍増約の術 ruihen zōyaku

no jutsu, 192

procedure of residual division 零約の術
reihaku no jutsu, 189

procedure of whittling 削片の術 sakuhen

no jutsu, 182

by procedures of decomposition and of

incremental divisor砕約の術（砕
抹の術と増約の術）saiyaku no

jutsu, 192

profound 深重 shinchō, 173

purely straight 純粋 junsui, 163

quadrangular pile 四角尖垜 shikaku

senda, 173

Quotient [row] 商 shō, 168

the rate of the circular circumference 円
の周率 en no shūritsu, 183, 219

rate of the diameter径率 [en no] keiritsu,

219

rate of the diameter径率 [en no] keiritsu,

183

real volume of the shell 片実積 henjit-

suseki, Literally, real accumula-

tion of the shell, 182

Reality [row] 実 jitsu, 166, 168

reason 理 ri, 163

reason of procedure 術理 jutsuri the for-

mal form of 術 jutsu., 163

reasonable evidence 拠理 ri niyoru, 157,

161, 164, 176, 203

rectangle 直 choku, 168

reduction 約分 yakubun, 164, 172, 211

removal number 脱数 datsu sû, 181

to remove completely 除き去る nozoki

saru, 172

root extraction 開方 kaihō, 164

rule 法 hō, 164
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rule 法術 hōjutsu, 167

rule and law法則 hōsoku the formal form

of 法 hō, 163

rule and procedure法術hōjutsu, 176, 177,

180

rule for finding differences 招差法 shōsa

hō, 173

rule of division by quotient 商除の法
shōjo no hō, method of division

using the multiplication chant,

166

rule of extraction of the quotient number

開出商数の法 kaishutsu shousū

no hō, 178

rule of [linear] equations方程の法則 hōtei

no hōsoku, 175

rule of multiplication因乗の法 injō no hō,

165

rule of multiplying first and dividing later

先乗後除の法式 senjō gojo no

hōshiki, 177

rule of nine-division 九帰除法 kukijohō,

i.e. the method of division using

the nine-division chant, 167

rule of signature 応加応減 ōka ōgen, 175

rules of decomposition and of incremen-

tal divisor 砕約の法 sai-yaku no

hō, 192

sagitta 矢 shi or ya, 185, 192

samurai 士 warrior, 164

saturation or exhaustion 満極干尽
mankyoku kanjin, 176

second approximate difference 二汎差 ni

han-sa, 193

second approximate difference of 2-

multiplication 再乗の二汎差
saijō no ni han-sa, 200

second definite difference 二定差 ni tei-

sa, 193, 199

second definite sum 第二の定積 daini no

tei-seki, 174

[second] definite sum difference [第二の]

定積差 daini no tei-seki sa, 175

second number to extract the Side row廉
級を開く二変の数 renkyū wo hi-

raku nihen no kazu, 179

second number which ought to extract

the Square row 応に方級を開く
べき二遍の数 masani hōkyū wo

hirakubeki nihen no sū, 179

[second] square sum [第二の]平差 daini

no hei-sa, 175

seed numbers for the table of the eclip-

tic 黄赤道立成の元数 kōsekidō

ryūsei no gensū, 181

to self-multiply 自乗す jijō su, 193

series of operations to solve problem解題
演段術 kaidan endan jutsu, 170

to settle 整う totonou, 172

Side [row] 廉 ren, 168

simplified procedure 括術 katsu jutsu,

165, 172, 177

simplified procedure of the fifth side五斜
の括術 gosha no katsu jutsu, 181

sixth approximate difference 六汎差 roku

han-sa, 194

sixth definite difference 六定差 roku tei-

sa, 194

slightly strong 微強 bikyō, 193, 214, 229

slightly weak 微弱 bijaku, 214

sphere 球面 kyūmen, 164, 182, 217

“square case difference divisor” 平限差法
hei gensa hō, 174

square difference 平差 hei-sa, 175

square of bisected chords 二斜の截背冪
nisha no setsuhaibeki, 192

square of the approximate half back arc

汎半背冪 han hanhai beki, 192,

198

square of the circular circumference 円周
冪 enshū beki, 192
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square if the definite half back arc 定半
背冪 tei-hanhai beki, 192

square root extraction with subordinate

帯従開方 taijū kaihō, 170

Square [row] 方 hō, 168, 210

square sum 平積 heiseki, 174

square sum difference 平積差 heiseki sa,

174

to stagnate 凝滞す gyōtai su, 176

starting number 原数 gensū, 171

straight in mind 純粋 junsui (ant. 偏駁,

distorted), 183

strong 強 kyō, 177, 182, 189, 192, 214

subtractive fifth difference 減五差 gen go

sa, 198

subtractive third difference 減三差 gen

san sa, 198

sum 積 seki, i.e., accumulation of a finite

series, 173

surface area of the shell 片面積 hen-

menseki, 182

technique of linkage 綴術 tetsujutsu, 163

theory of proper character自質説 jishitsu

no setsu, 164

third approximate difference 三汎差 san

han-sa, 193

third approximate difference of 4-

multiplication 四乗の三汎差 shi

joō no san han-sa, 201

third definite difference三定差 san tei-sa,

193, 200

third definite sum 第三の定積 daisan no

tei-seki, 175

true rate 真率 shinritsu, 190

truth 真実 shinjitsu, 164

uneven 参差 shinshi, 174

virtual side 仮の方面 kari no hōmen, 168

volume 積 seki, 3 dimensional accumula-

tion, 168

volume 積数 seki sū, Literally, number of

accumulation, 178

Way of Mathematics算の道 san no michi,

204, 206

Way of Mathematics 数の道 kazu no

michi, 176, 180

weak 弱 jaku, 177, 182, 193, 214

Weavers, Repeated exchanges between織
工 shokukō, 164

width of the shell 片厚 henkō, 182

to work in a painstaking manner 苦行に
止まる。kukō ni todomaru, 184
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